Effect of continuous annealing parameters on the mechanical properties and microstructures of a cold rolled dual phase steel

2009 ◽  
Vol 16 (2) ◽  
pp. 159-164 ◽  
Author(s):  
Shuang Kuang ◽  
Yong-lin Kang ◽  
Hao Yu ◽  
Ren-dong Liu
2014 ◽  
Vol 59 (2) ◽  
pp. 821-824 ◽  
Author(s):  
M. Šebek ◽  
P. Horňak ◽  
P. Zimovčák ◽  
S. Longauer

Abstract The article deals with the influence of annealing parameters on evolution of microstructure and mechanical properties of dual phase steel. Dual phase steel was annealed in laboratory conditions according to the three chosen cycles of annealing: into intercritical region (780°C), into austenite region (920°C) and into austenite region (920°C) by subsequently cooling into intercritical region (780°C) with the hold at the temperature of 495°C. Simulation of annealing regimes by thermo-mechanical simulator Gleeble was done. The obtained microstructure consists from three phases: ferritic matrix, martensite and martensite/ bainite grains. For the microstructure identification the TEM and nanoindentation experiments were performed.


2013 ◽  
Vol 313-314 ◽  
pp. 693-696
Author(s):  
Ji Yuan Liu ◽  
Fu Xian Zhu ◽  
Shi Cheng Ma

Cold rolled dual phase steel was developed from Q345 steel by heat treatment procedure for automotive applications. The ultimate tensile strength was improved about 100MPa higher than the traditional cold-rolled Q345 steel in the continuous annealing simulation experiment. The microstructure presented varied characteristics in different intercritical annealing temperatures; mechanical properties were changed correspondingly as well. The chief discussions are focus on the recrystallization, hardenability of austenite and martensite transformation in the experiment.


2010 ◽  
Vol 146-147 ◽  
pp. 1331-1335 ◽  
Author(s):  
Guo Bin Li ◽  
Zheng Zhi Zhao ◽  
Di Tang

The microstructure evolution of 780 MPa hot dip galvanized dual-phase (DP) steel at heating stages of the annealing process was analyzed using a Gleeble−3500 thermal/mechanical simulator. A multifunction continuous annealing simulator was employed to investigate the effect of annealing process on microstructure and mechanical properties of hot dip galvanized DP steel. The experimental results show that ferrite recovery and recrystallization, pearlite dissolution and austenite nucleation and growth take place in the annealing process of hot dip galvanized DP steel. The hardenability can be significantly improved by trace addition of vanadium. When the soaking temperature reaches 780 °C, the tensile strength and total elongation of DP steel can reach 785MPa and 15%, respectively. The microstructure of DP steel mainly consists of a mixture of ferrite and martensite.


Sign in / Sign up

Export Citation Format

Share Document