scholarly journals Development techniques for deep complex fault block reservoirs with low permeability in Zhongyuan Oilfield

2008 ◽  
Vol 35 (4) ◽  
pp. 462-466 ◽  
Author(s):  
Sheng-qun DAI ◽  
Chang-min ZHANG ◽  
Tai-ju YIN ◽  
Fu-hua GONG ◽  
Shi-lei ZOU
2014 ◽  
Vol 511-512 ◽  
pp. 779-782 ◽  
Author(s):  
Jiang Tao Yu ◽  
Jin Liang Zhang ◽  
Shuang Yan Chen

Three dimensional geologic modeling is a powerful tool for reservoir development stages of geological study, it can solves many traditional problems existing in geological research through the establishment of precise three dimensional geologic modeling and represents an important direction for the further development of oilfield geological research. Low permeability and thin interbed reservoir of complex fault block have the characteristics of severe heterogeneity, complex relations of oil-water distribution, poor development effect, it is necessary to built high precision three dimensional geologic modeling in the process of oilfield exploration and to fine reservoir description and prediction on this basis, finally reach the purpose of reduce the risk of development and improve the economic benefit. This paper makes geological modeling research and builds structural models sedimentary micro-facies models and phased property model for Zhuzhuang block of Jiangsu oilfield by utilizing three dimensional geologic modeling technique and petrel geology modeling software on the basis of integrated using of geology, logging, oil production test, production of dynamic information, thus it provide a solid basis for reservoir's development and adjustment.


2014 ◽  
Vol 915-916 ◽  
pp. 1128-1131
Author(s):  
Yu Sheng Ding ◽  
Shuang Yan Chen ◽  
Jun Xie ◽  
Ju Biao Zhou ◽  
Li Yao Li

Inefficient reserves in fault block belongs to low permeability thin interbed, thus water flooding development process has exposed many contradictions which are serious heterogeneity, large difference of suction of interlayer. Entering the water injection development, the injected water which rapidly advance along the high permeability channel causes water channeling and water flooding, which intenses development contradictions between layers. The reservoir numerical simulation technology on computer can reappear the movement of water and gas in the underground reservoir development process and describes the underground remaining oil distribution of inefficient reserves in complex fault block, which summarizes the remaining oil distribution rule of the water flooding development for complex fault block of inefficient reserves and provides basis for the establishment of oil field development adjustment scheme.


2019 ◽  
Author(s):  
Songlin Fan ◽  
Xiaofang Wang ◽  
Jun Dong ◽  
Qiuyan You ◽  
Xiaochun Yang ◽  
...  

2013 ◽  
Vol 295-298 ◽  
pp. 3162-3165
Author(s):  
Lu Lu Zhou ◽  
Zi Nan Li ◽  
Jun Gang Liu ◽  
Yan Yun Zhang ◽  
Guang Qiang Shu

Taking the example of the fourth member of the Lower Cretaceous Quantou formation reservoirs in fault block Sheng554 of Sanzhao sag, this article discusses the methodology of flow units in extra-low permeability reservoirs. The research on flow units in such reservoirs can be divided into two ranks, one is to determine the distribution of seepage barriers and inner connected sands, the other is to analyze the differentia of fluid flow in the inner connected sands so as to subdivide the flow units. The result shows that the pelitic barriers are rather developed in fault block Sheng554. Through the analysis of differentia of fluid flow, according to the value of flow zone index (FZI), the inner connected sands can be classified into three types of flow units, among which type A with FZI value greater than 1.0 has better permeable property and higher intensity of water injection, and the ability of permeability and water injection of type B with FZI value between 0.5 and 1.0 takes the second place, and type C is the worst flow unit with the worst permeable property and intensity of water injection with FZI value less than 0.5. Among the three types of flow units, type A poorly develops, while type B and type C develops well. The research on flow units can provide reliable geologic bases for forecasting the distribution of remaining oil in extra-low permeability reservoirs and for developing remaining oil in the study area.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Shibao Yuan ◽  
Rui Wang ◽  
Haiyan Jiang ◽  
Qing Xie ◽  
Shengnan Chen ◽  
...  

The complex fault block reservoir has the characteristics of small area and many layers in vertical. Due to the influence of formation heterogeneity and well pattern, the situation that “water fingering is serious with water injection, on the contrary, driving energy is low” frequently occurs in water flooding, which makes it difficult to enhance oil recovery. Asynchronous injection-production (AIP) process divides the conventional continuous injection-production process into two independent processes: injection stage and production stage. In order to study oil recovery in the fault block reservoir by AIP technology, a triangle closed block reservoir is divided into 7 subareas. The result of numerical simulation indicates that all subareas have the characteristic of fluid diverting and remaining oil in the central area is also affected by injected water at injection stage of AIP technology. Remaining oil in the central area is driven to the included angle and border area by injected water and then produced at the production stage. Finally, the oil recovery in the central area rises by 5.2% and in the noncentral area is also increased in different levels. The AIP process can realize the alternative change of reservoir pressure, change the distribution of flow field, and enlarge the swept area by injected water. To sum it up, the AIP process is an effective method to improve the oil recovery in complex fault-block reservoir by water flooding.


2016 ◽  
Author(s):  
Li Suzhen ◽  
Yan Xuemei ◽  
Xu Yun ◽  
Wang Liao ◽  
Gao Rui ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document