scholarly journals Delineating the rice crop activities in Northeast China through regional parametric synthesis using satellite remote sensing time-series data from 2000 to 2015

2021 ◽  
Vol 20 (2) ◽  
pp. 424-437 ◽  
Author(s):  
Dan CAO ◽  
Jian-zhong FENG ◽  
Lin-yan BAI ◽  
Lan XUN ◽  
Hai-tao JING ◽  
...  
2021 ◽  
Vol 13 (9) ◽  
pp. 1836
Author(s):  
Fa Zhao ◽  
Guijun Yang ◽  
Xiaodong Yang ◽  
Haiyan Cen ◽  
Yaohui Zhu ◽  
...  

Accurate determination of phenological information of crops is essential for field management and decision-making. Remote sensing time-series data are widely used for extracting phenological phases. Existing methods mainly extract phenological phases directly from individual remote sensing time-series, which are easily affected by clouds, noise, and mixed pixels. This paper proposes a novel method of phenological phase extraction based on the time-weighted dynamic time warping (TWDTW) algorithm using MODIS Normalized Difference Vegetation Index (NDVI) 5-day time-series data with a spatial resolution of 500 m. Firstly, based on the phenological differences between winter wheat and other land cover types, winter wheat distribution is extracted using the TWDTW classification method, and the results show that the overall classification accuracy and Kappa coefficient reach 94.74% and 0.90, respectively. Then, we extract the pure winter-wheat pixels using a method based on the coefficient of variation, and use these pixels to generate the average phenological curve. Next, the difference between each winter-wheat phenological curve and the average winter-wheat phenological curve is quantitatively calculated using the TWDTW algorithm. Finally, the key phenological phases of winter wheat in the study area, namely, the green-up date (GUD), heading date (HD), and maturity date (MD), are determined. The results show that the phenological phase extraction using the TWDTW algorithm has high accuracy. By verification using phenological station data from the Meteorological Data Sharing Service System of China, the root mean square errors (RMSEs) of the GUD, HD, and MD are found to be 9.76, 5.72, and 6.98 days, respectively. Additionally, the method proposed in this article is shown to have a better extraction performance compared with several other methods. Furthermore, it is shown that, in Hebei Province, the GUD, HD, and MD are mainly affected by latitude and accumulated temperature. As the latitude increases from south to north, the GUD, HD, and MD are delayed, and for each 1° increment in latitude, the GUD, HD, and MD are delayed by 4.84, 5.79, and 6.61 days, respectively. The higher the accumulated temperature, the earlier the phenological phases occur. However, latitude and accumulated temperature have little effect on the length of the phenological phases. Additionally, the lengths of time between GUD and HD, HD and MD, and GUD and MD are stable at 46, 41, and 87 days, respectively. Overall, the proposed TWDTW method can accurately determine the key phenological phases of winter wheat at a regional scale using remote sensing time-series data.


2018 ◽  
Vol 42 (3) ◽  
pp. 447-456 ◽  
Author(s):  
D. E. Plotnikov ◽  
P. A. Kolbudaev ◽  
S. A. Bartalev

We propose a method of segmentation of remote sensing time series data, which exploits multi-temporal information to identify objects’ boundaries. Extracting homogeneous objects with similar temporal behavior, the method analyzes large volumes of multi-temporal input data in a piecewise way and produces a consistent output segmentation layer for large territories. Segment building logic is simplified to minimize the computation time, while objects’ boundary identification accuracy remains sufficient for remote monitoring and mapping of vegetation, and specifically, agricultural crops. At the Space Research Institute of the RAS, the proposed method is currently applied for automated on-line satellite imagery analysis for recognition and mapping of (winter and spring) crops on large territories and land-use evaluation. The method successfully deals with gaps in remote sensing time series data and performs well even when input images are contaminated with speckle noise. Due to its  ability to map dynamically homogeneous surface areas with partially missing data, the method provides a potential for their recovery.


2020 ◽  
Vol 12 (4) ◽  
pp. 1313
Author(s):  
Leah M. Mungai ◽  
Joseph P. Messina ◽  
Sieglinde Snapp

This study aims to assess spatial patterns of Malawian agricultural productivity trends to elucidate the influence of weather and edaphic properties on Moderate Resolution Imaging Spectroradiometer (MODIS)-Normalized Difference Vegetation Index (NDVI) seasonal time series data over a decade (2006–2017). Spatially-located positive trends in the time series that can’t otherwise be accounted for are considered as evidence of farmer management and agricultural intensification. A second set of data provides further insights, using spatial distribution of farmer reported maize yield, inorganic and organic inputs use, and farmer reported soil quality information from the Malawi Integrated Household Survey (IHS3) and (IHS4), implemented between 2010–2011 and 2016–2017, respectively. Overall, remote-sensing identified areas of intensifying agriculture as not fully explained by biophysical drivers. Further, productivity trends for maize crop across Malawi show a decreasing trend over a decade (2006–2017). This is consistent with survey data, as national farmer reported yields showed low yields across Malawi, where 61% (2010–11) and 69% (2016–17) reported yields as being less than 1000 Kilograms/Hectare. Yields were markedly low in the southern region of Malawi, similar to remote sensing observations. Our generalized models provide contextual information for stakeholders on sustainability of productivity and can assist in targeting resources in needed areas. More in-depth research would improve detection of drivers of agricultural variability.


Sign in / Sign up

Export Citation Format

Share Document