scholarly journals The effect of reforestation on stream flow in Upper Nan river basin using Soil and Water Assessment Tool (SWAT) model

2013 ◽  
Vol 1 (2) ◽  
pp. 53-63 ◽  
Author(s):  
Winai Wangpimool ◽  
Kobkiat Pongput ◽  
Chinnapat Sukvibool ◽  
Samran Sombatpanit ◽  
Philip W. Gassman
2014 ◽  
Vol 1073-1076 ◽  
pp. 1751-1755
Author(s):  
Fang Ma ◽  
Xiao Feng Jiang ◽  
Li Wang ◽  
Dan Shan ◽  
Xiong Wei Liang ◽  
...  

The Soil and Water Assessment Tool (SWAT) model was examined for its applicability in modeling stream-flow and nutrients (total nitrogen, TN and total phosphorus, TP) in Ashi River Basin, China covering an area of 3545 km2. This model was calibrated by using the observed data of monthly flow during 1996-2005 and nutrients (TN and TP) during 2006-2008, and validated by using the observed data of monthly flow during 2006-2010 and water quality during 2009-2010. For stream-flow, the monthly results of RE, R2 and ENS values reached 6.42%, 0.61 and 0.59 respectively for calibration period, whereas these were-12.83%, 0.69 and 0.67, respectively for validation period; for TN calibration, values of RE, R2 and ENS were-18.33%, 0.64 and 0.55 respectively, and for validation period they were-17.34%, 0.68 and 0.57 respectively; for TP calibration, values of RE, R2 and ENS were-4.32%, 0.61 and 0.56 respectively, and for validation period they were-18.02%, 0.67 and 0.58 respectively. Results show that SWAT has applicability in modeling stream-flow and nutrients (TN and TP) in cold and flat area.


2020 ◽  
Author(s):  
Paul D. Wagner ◽  
Katrin Bieger ◽  
Jeffrey G. Arnold ◽  
Nicola Fohrer

<p>The hydrology of rural lowland catchments in Northern Germany is characterized by near-surface groundwater tables and extensive tile drainage. Previous research has shown that representing these characteristics with the hydrologic model SWAT (Soil and Water Assessment Tool) required an improvement of groundwater processes, which has been achieved by dividing the shallow aquifer into a fast and a slow shallow aquifer. The latest version of the Soil and Water Assessment Tool (SWAT+) features several improvements compared to previous versions of the model, e.g. the definition of landscape units that allow for a better representation of spatio-temporal dynamics. To evaluate the new model capabilities for lowland catchments, we assess the performance of SWAT+ in comparison to previous SWAT applications in the Kielstau Catchment in Northern Germany. The Kielstau Catchment is about 50 km² large, is dominated by agricultural land use, and has been thoroughly monitored since 2005. In particular, we explore the capabilities of SWAT+ in terms of watershed configuration and simulation of landscape processes by comparing two model setups. The first setup is comparable to previous SWAT models for the catchment, i.e. yields from hydrologic response units are summed up at subbasin level and added directly to the stream. In the second SWAT+ model, subbasins are divided into upland areas and floodplains and runoff is routed across the landscape before it reaches the streams. Model performance is assessed with regard to measured stream flow at the outlet of the catchment. Results from the new SWAT+ model confirm that two groundwater layers are necessary to represent stream flow in the catchment. The representation of routing processes from uplands to floodplains in the model further improved the simulation of stream flow. The outcomes of this study are expected to contribute to a better understanding and model representation of lowland hydrology.</p>


Author(s):  
Timketa Adula Duguma

Abstract: In this study the semi-distributed model SWAT (Soil and Water Assessment Tool), were applied to evaluate stream flow of Didessa sub basin, which is one of the major sub basins in Abay river basin of Ethiopia. The study evaluated the quality of observed meteorological and hydrological data, established SWAT hydrological model, identified the most sensitive parameters, evaluated the best distribution for flow and developed peak flow for major tributary in the sub basin. The result indicated that the SWAT model developed for the sub basin evaluated at multi hydro-gauging stations and its performance certain with the statistical measures, coefficient about determination (R2) and also Nash coefficient (NS) with values ranging 0.62 to 0.8 and 0.6 to 0.8 respectively at daily time scale. The values of R2 and NS increases at monthly time scale and found ranging 0.75 to 0.92 and 0.71 to 0.91 respectively. Sensitivity analysis is performed to identify parameters those were most sensitive for the sub basin. CN2, GWQMN, CH_K, ALPHA_BNK and LAT_TIME are the most sensitive parameters in the sub basin. Finally, the peak flow for 2-10000 returns periods were determined after the best probability distribution is identified in EasyFit computer program.


2013 ◽  
Vol 340 ◽  
pp. 942-946 ◽  
Author(s):  
Kai Xu ◽  
Hui Qing Peng

The Soil and Water Assessment Tool (SWAT) was used to simulate runoff yield in Tao River Basin on ArcView GIS platform. The main objective was to validate the performance of SWAT and the feasibility of this model as a simulator of runoff in a catchment. The investigation was conducted using a 6-year historical runoff record from 2001 to 2008 (2001-2004 for calibration and 2005-2008 for validation). The simulated monthly runoff matched the observed values satisfactorily, with Re was less than 20%, R2 > 0.78 and Nash-suttclife (Ens)>0.8 for both calibration and validation period at 4 hydrological stations. These indicated that the simulation of runoff was reasonable, reflecting the validity of SWAT model in Tao River Basin.


2018 ◽  
Author(s):  
Sri Rahayu Ayuba

Based on SK.328 / Menhut-II / 2009, the Limboto Bone Bolango River Basin (DAS) is designated as a watershed in critical condition and requires priority handling. This study aims to determine the level of vulnerability of Bone watershed to drought. This research was conducted at Bone River Basin (DAS). The method used is SWAT Method (Soil and Water Assessment Tool) by using ArcSwat software. This research is included in non-experimental research by using direct observation in the field. The input data in the SWAT Model is the slope, the type of land cover, climate, and soil type. The parameter that is the output of SWAT Model used in determining the level of vulnerability of the watershed, is the value of SW (Soil Water) for the determination of drought. Research has shown that Bone watershed has a susceptibility to dryness, 21.7% of the watershed area is susceptible to susceptible drought classification, while 78.5% are in the non-vulnerable category. This percentage is spread in 15 and 50 sub watershed/Small watershed. The decrease in productivity of one agricultural commodity shows that the Bone watershed which is administratively located in Bone Bolango Regency is related to the existing drought levels.


Water ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 356
Author(s):  
Yuechao Chen ◽  
Makoto Nakatsugawa ◽  
Hiroki Ohashi

Landslides, debris flows, and other secondary disasters caused by earthquakes threaten the safety and stability of river basins. Earthquakes occur frequently in Japan. Therefore, it is necessary to study the impact of earthquakes on sediment transport in river basins. In this study, considering the influence of reservoirs, the Soil and Water Assessment Tool-calibration and uncertainty program (SWAT-CUP) was employed to analyze the runoff parameter sensitivity and to optimize the parameters. We manually corrected the sediment transport parameters after earthquake, using the Soil and Water Assessment Tool (SWAT) model to assess the process of runoff and sediment transport in the Atsuma River basin before and after the 2018 Hokkaido Eastern Iburi Earthquake. The applicability of the SWAT model to runoff simulation in the Atsuma River basin and the changes of sediment transport process after the earthquake were studied. The research results show that the SWAT model can accurately simulate the runoff process in the Atsuma River basin, the Nash–Sutcliffe efficiency coefficient (NSE) is 0.61 in the calibration period, and is 0.74 in the verification period. The sediment transport increased greatly after the earthquake and it is roughly estimated that the amount of sediment transport per unit rainfall increased from 3.5 tons/mm/year before the earthquake to 6.2 tons/mm/year after the earthquake.


2013 ◽  
Vol 7 (3) ◽  
pp. 252-257

The subject of this article is the estimation of quantitative (hydrological) and qualitative parameters in the catchment of Ronnea (1800 Km2, located in south western Sweden) through the application of the Soil and Water Assessment Tool (SWAT). SWAT is a river basin model that was developed for the U.S.D.A. Agricultural Research Service, by the Blackland Research Center in Texas. The SWAT model is a widely known tool that has been used in several cases world-wide. It has the ability to predict the impact of land management practices on water, sediment and agricultural chemical yield in large complex watersheds. The present work investigates certain capabilities of the SWAT model which have not identified up to now. More in specific, the main targets of the work carried out are the following: • Identification of the existing hydrological and qualitative conditions • Preparation - Processing of data required to be used as input data of the model • Hydrological calibration - validation of the model, in 7 subbasins of the Catchment of Ronnea • Estimation and evaluation of the simulated qualitative parameters of the model All available data were offered by the relevant Institutes of Sweden, in the framework of the European program EUROHARP. The existing conditions in the catchment of Ronnea, are described in detail including topography, land uses, soil types, pollution sources, agricultural management practices, precipitation, temperature, wind speed, humidity, solar radiation as well as observed discharges and Nitrogen and Phosphorus substances concentrations. Most of the above data were used as input data for the application of SWAT model. Adequate methods were also used to complete missing values in time series and estimate additional parameters (such as soil parameters) required by the model. Hydrological calibration and validation took place for each outlet of the 7 subbasins of Ronnea catchment in an annual, monthly and daily step. The calibration was achieved by estimating parameters related to ground water movement and evaluating convergence between simulated and observed discharges by using mainly the Nash & Sutcliffe coefficient (NTD). Through the sensitivity analysis, main parameters of the hydrological simulation, were detected. According to the outputs of the SWAT model, the water balance of Ronnea catchment was also estimated. Hydrological calibration and validation is generally considered sufficient in an annual and monthly step. Hydrological calibration – validation in daily step, generally does not lead to high values of the NTD indicator. However, when compared to results obtained by the use of SWAT in Greece, a relatively high value of NTD is achieved in one subbasin. Finally, a comparison between the simulated and observed concentrations of total Phosphorus and Nitrogen was carried out.


Heliyon ◽  
2019 ◽  
Vol 5 (7) ◽  
pp. e02106 ◽  
Author(s):  
J. Daramola ◽  
T.M. Ekhwan ◽  
J. Mokhtar ◽  
K.C. Lam ◽  
G.A. Adeogun

Sign in / Sign up

Export Citation Format

Share Document