scholarly journals Application of SWAT (Soil and Water Assessment Tool) to the Abay River Basin of Ethiopia: The Case of Didessa Sub Basin

Author(s):  
Timketa Adula Duguma

Abstract: In this study the semi-distributed model SWAT (Soil and Water Assessment Tool), were applied to evaluate stream flow of Didessa sub basin, which is one of the major sub basins in Abay river basin of Ethiopia. The study evaluated the quality of observed meteorological and hydrological data, established SWAT hydrological model, identified the most sensitive parameters, evaluated the best distribution for flow and developed peak flow for major tributary in the sub basin. The result indicated that the SWAT model developed for the sub basin evaluated at multi hydro-gauging stations and its performance certain with the statistical measures, coefficient about determination (R2) and also Nash coefficient (NS) with values ranging 0.62 to 0.8 and 0.6 to 0.8 respectively at daily time scale. The values of R2 and NS increases at monthly time scale and found ranging 0.75 to 0.92 and 0.71 to 0.91 respectively. Sensitivity analysis is performed to identify parameters those were most sensitive for the sub basin. CN2, GWQMN, CH_K, ALPHA_BNK and LAT_TIME are the most sensitive parameters in the sub basin. Finally, the peak flow for 2-10000 returns periods were determined after the best probability distribution is identified in EasyFit computer program.

2011 ◽  
Vol 84-85 ◽  
pp. 238-243
Author(s):  
Yu Jie Fang ◽  
Wen Bin Zhou ◽  
Ding Gui Luo

Hydrological simulation is the basis of water resources management and utilization. In this study, Soil and Water Assessment Tool (SWAT) model was applied to Jin River Basin for hydrological simulation on ArcView3.3 platform. The basic database of Jin river Basin was built using ArcGis9.2. Based on the LH-OAT parameter sensitivity analysis, the sensitive parameters of runoff were identified, including CN2, Gwqmn, rchrg_dp, ESCO, sol_z, SLOPE, SOL_AWC, sol_k, Gwrevap, and then model parameters related to runoff were calibrated and validated using data observed in weifang, yifeng, shanggao and gaoan hydrological stations during 2001-2008. The simulation showed that the simulated values were reasonably comparable to the observed data (Re<20%, R2 >0.7 and Nash-suttcliffe > 0.7), suggesting the validity of SWAT model in Jin River Basin.


2013 ◽  
Vol 340 ◽  
pp. 942-946 ◽  
Author(s):  
Kai Xu ◽  
Hui Qing Peng

The Soil and Water Assessment Tool (SWAT) was used to simulate runoff yield in Tao River Basin on ArcView GIS platform. The main objective was to validate the performance of SWAT and the feasibility of this model as a simulator of runoff in a catchment. The investigation was conducted using a 6-year historical runoff record from 2001 to 2008 (2001-2004 for calibration and 2005-2008 for validation). The simulated monthly runoff matched the observed values satisfactorily, with Re was less than 20%, R2 > 0.78 and Nash-suttclife (Ens)>0.8 for both calibration and validation period at 4 hydrological stations. These indicated that the simulation of runoff was reasonable, reflecting the validity of SWAT model in Tao River Basin.


2021 ◽  
Vol 14 (2) ◽  
pp. 619
Author(s):  
Filipe Otávio Passos ◽  
Benedito Cláudio Da Silva ◽  
Fernando Das Graças Braga da Silva

Diversos processos naturais podem causar mudanças nos fluxos hidrológicos dentro de bacias hidrográficas, sendo estas ainda mais afetadas devido a ações antrópicas que mudem as suas características físicas, principalmente, o tipo e o uso do solo. Neste contexto, este trabalho apresenta uma calibração de um modelo de transformação chuva x vazão e posterior simulação para a estimativa das vazões na bacia hidrográfica do ribeirão José Pereira, em Itajubá, sul de Minas Gerais, utilizando o modelo distribuído Soil and Water Assessment Tool (Swat). Foram gerados cinco cenários de uso e ocupação do solo, que foram idealizados a partir de características observadas na bacia ou de tendências futuras de ocupação, a saber, o cenário do estado atual, de manejo do solo, de recuperação das áreas de preservação permanente (APPs) de margens de rios, de substituição total por floresta e de crescimento urbano. Os resultados indicam que o modelo Swat pode ser utilizado na simulação das componentes hidrológicas de bacias hidrográficas de pequeno porte, e ainda que o manejo agrícola e o reflorestamento da bacia são mais eficientes na diminuição do escoamento superficial do que a recuperação das APPs, chegando a uma diminuição de aproximadamente 40% nas vazões máximas simuladas. Impact Assessment of Changes in Land Use and Management on the Losses of the Water Source of the José Pereira Stream, Using the SWAT Model A B S T R A C TSeveral natural processes can cause changes in hydrological flows within hydrographic basins, which are even more affected due to anthropic actions that change their physical characteristics, mainly, the type and use of the soil. In this context, this work carries out an analysis of the impact on the flows of a small-scale hydrographic basin (River José Pereira) due to changes in land use and occupation, using the distributed model Soil and Water Assessment Tool (SWAT). Five land use and occupation scenarios were generated, which were designed based on characteristics observed in the basin or future occupation trends, namely, the current state scenario, soil management, recovery of permanent preservation areas (APPs) of river banks, total replacement by forest and urban growth. The results indicate that the SWAT model can be used in the simulation of the hydrological components of small hydrographic basins, and that agricultural management and reforestation of the basin are more efficient in reducing runoff than the recovery of APPs, reaching a decrease of approximately 40% in the maximum simulated flows.Keywords: hydrological modeling, rainfall, SWAT, land use and occupation.


2013 ◽  
Vol 1 (2) ◽  
pp. 53-63 ◽  
Author(s):  
Winai Wangpimool ◽  
Kobkiat Pongput ◽  
Chinnapat Sukvibool ◽  
Samran Sombatpanit ◽  
Philip W. Gassman

2014 ◽  
Vol 1073-1076 ◽  
pp. 1751-1755
Author(s):  
Fang Ma ◽  
Xiao Feng Jiang ◽  
Li Wang ◽  
Dan Shan ◽  
Xiong Wei Liang ◽  
...  

The Soil and Water Assessment Tool (SWAT) model was examined for its applicability in modeling stream-flow and nutrients (total nitrogen, TN and total phosphorus, TP) in Ashi River Basin, China covering an area of 3545 km2. This model was calibrated by using the observed data of monthly flow during 1996-2005 and nutrients (TN and TP) during 2006-2008, and validated by using the observed data of monthly flow during 2006-2010 and water quality during 2009-2010. For stream-flow, the monthly results of RE, R2 and ENS values reached 6.42%, 0.61 and 0.59 respectively for calibration period, whereas these were-12.83%, 0.69 and 0.67, respectively for validation period; for TN calibration, values of RE, R2 and ENS were-18.33%, 0.64 and 0.55 respectively, and for validation period they were-17.34%, 0.68 and 0.57 respectively; for TP calibration, values of RE, R2 and ENS were-4.32%, 0.61 and 0.56 respectively, and for validation period they were-18.02%, 0.67 and 0.58 respectively. Results show that SWAT has applicability in modeling stream-flow and nutrients (TN and TP) in cold and flat area.


2018 ◽  
Author(s):  
Sri Rahayu Ayuba

Based on SK.328 / Menhut-II / 2009, the Limboto Bone Bolango River Basin (DAS) is designated as a watershed in critical condition and requires priority handling. This study aims to determine the level of vulnerability of Bone watershed to drought. This research was conducted at Bone River Basin (DAS). The method used is SWAT Method (Soil and Water Assessment Tool) by using ArcSwat software. This research is included in non-experimental research by using direct observation in the field. The input data in the SWAT Model is the slope, the type of land cover, climate, and soil type. The parameter that is the output of SWAT Model used in determining the level of vulnerability of the watershed, is the value of SW (Soil Water) for the determination of drought. Research has shown that Bone watershed has a susceptibility to dryness, 21.7% of the watershed area is susceptible to susceptible drought classification, while 78.5% are in the non-vulnerable category. This percentage is spread in 15 and 50 sub watershed/Small watershed. The decrease in productivity of one agricultural commodity shows that the Bone watershed which is administratively located in Bone Bolango Regency is related to the existing drought levels.


2021 ◽  
Vol 02 (01) ◽  
pp. 001-008
Author(s):  
Farhad Sakhaee

Silver Creek Watershed has a basin of 1213.11 km2, located in Southern part of Illinois State (U.S.A), including highland silver lake and its east fork tributary. This research employs (Soil and Water Assessment Tool) to analyze the watershed as a function of land use parameters. Diff erent parameters have been considered in sensitivity analysis to determine the most sensitive parameters for fl ow rate calibration within diff erent hydrological response units (HRUs). Inputs parameters include precipitations and meteorological data such as solar radiation, wind speed and direction, temperature, and relative humidity. Model was calibrated with measured daily data for Troy gage station. The main objective was to simulate and calibrate the fl ow rate with SWAT model. Uncertainty analysis has been performed with SUFI-2 (Sequential Uncertainty Fitting Version-2) which is interfaced with SWAT applying iSWAT (generic coupling format program). Correlation between several stations within the domain has been calculated which showed a good range of Correlation (R2) values which means the pattern of meteorological data was evenly distributed. Finally based on the root mean of squares error (RMSE), (R2), NSE, and P-BIAS values, the accuracy of the calibration has been determined


Water ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 356
Author(s):  
Yuechao Chen ◽  
Makoto Nakatsugawa ◽  
Hiroki Ohashi

Landslides, debris flows, and other secondary disasters caused by earthquakes threaten the safety and stability of river basins. Earthquakes occur frequently in Japan. Therefore, it is necessary to study the impact of earthquakes on sediment transport in river basins. In this study, considering the influence of reservoirs, the Soil and Water Assessment Tool-calibration and uncertainty program (SWAT-CUP) was employed to analyze the runoff parameter sensitivity and to optimize the parameters. We manually corrected the sediment transport parameters after earthquake, using the Soil and Water Assessment Tool (SWAT) model to assess the process of runoff and sediment transport in the Atsuma River basin before and after the 2018 Hokkaido Eastern Iburi Earthquake. The applicability of the SWAT model to runoff simulation in the Atsuma River basin and the changes of sediment transport process after the earthquake were studied. The research results show that the SWAT model can accurately simulate the runoff process in the Atsuma River basin, the Nash–Sutcliffe efficiency coefficient (NSE) is 0.61 in the calibration period, and is 0.74 in the verification period. The sediment transport increased greatly after the earthquake and it is roughly estimated that the amount of sediment transport per unit rainfall increased from 3.5 tons/mm/year before the earthquake to 6.2 tons/mm/year after the earthquake.


Forests ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 860
Author(s):  
Nicu Constantin Tudose ◽  
Mirabela Marin ◽  
Sorin Cheval ◽  
Cezar Ungurean ◽  
Serban Octavian Davidescu ◽  
...  

This study aims to build and test the adaptability and reliability of the Soil and Water Assessment Tool hydrological model in a small mountain forested watershed. This ungauged watershed covers 184 km2 and supplies 90% of blue water for the Brașov metropolitan area, the second largest metropolitan area of Romania. After building a custom database at the forest management compartment level, the SWAT model was run. Further, using the SWAT-CUP software under the SUFI2 algorithm, we identified the most sensitive parameters required in the calibration and validation stage. Moreover, the sensitivity analysis revealed that the surface runoff is mainly influenced by soil, groundwater and vegetation condition parameters. The calibration was carried out for 2001‒2010, while the 1996‒1999 period was used for model validation. Both procedures have indicated satisfactory performance and a lower uncertainty of model results in replicating river discharge compared with observed discharge. This research demonstrates that the SWAT model can be applied in small ungauged watersheds after an appropriate parameterisation of its databases. Furthermore, this tool is appropriate to support decision-makers in conceiving sustainable watershed management. It also guides prioritising the most suitable measures to increase the river basin resilience and ensure the water demand under climate change.


2013 ◽  
Vol 7 (3) ◽  
pp. 252-257

The subject of this article is the estimation of quantitative (hydrological) and qualitative parameters in the catchment of Ronnea (1800 Km2, located in south western Sweden) through the application of the Soil and Water Assessment Tool (SWAT). SWAT is a river basin model that was developed for the U.S.D.A. Agricultural Research Service, by the Blackland Research Center in Texas. The SWAT model is a widely known tool that has been used in several cases world-wide. It has the ability to predict the impact of land management practices on water, sediment and agricultural chemical yield in large complex watersheds. The present work investigates certain capabilities of the SWAT model which have not identified up to now. More in specific, the main targets of the work carried out are the following: • Identification of the existing hydrological and qualitative conditions • Preparation - Processing of data required to be used as input data of the model • Hydrological calibration - validation of the model, in 7 subbasins of the Catchment of Ronnea • Estimation and evaluation of the simulated qualitative parameters of the model All available data were offered by the relevant Institutes of Sweden, in the framework of the European program EUROHARP. The existing conditions in the catchment of Ronnea, are described in detail including topography, land uses, soil types, pollution sources, agricultural management practices, precipitation, temperature, wind speed, humidity, solar radiation as well as observed discharges and Nitrogen and Phosphorus substances concentrations. Most of the above data were used as input data for the application of SWAT model. Adequate methods were also used to complete missing values in time series and estimate additional parameters (such as soil parameters) required by the model. Hydrological calibration and validation took place for each outlet of the 7 subbasins of Ronnea catchment in an annual, monthly and daily step. The calibration was achieved by estimating parameters related to ground water movement and evaluating convergence between simulated and observed discharges by using mainly the Nash & Sutcliffe coefficient (NTD). Through the sensitivity analysis, main parameters of the hydrological simulation, were detected. According to the outputs of the SWAT model, the water balance of Ronnea catchment was also estimated. Hydrological calibration and validation is generally considered sufficient in an annual and monthly step. Hydrological calibration – validation in daily step, generally does not lead to high values of the NTD indicator. However, when compared to results obtained by the use of SWAT in Greece, a relatively high value of NTD is achieved in one subbasin. Finally, a comparison between the simulated and observed concentrations of total Phosphorus and Nitrogen was carried out.


Sign in / Sign up

Export Citation Format

Share Document