scholarly journals A deep-learning model to assist thyroid nodule diagnosis and management

Author(s):  
Bin Zhang ◽  
Zhe Jin ◽  
Shuixing Zhang
2020 ◽  
Vol 185 ◽  
pp. 03021
Author(s):  
Meng Zhou ◽  
Rui Wang ◽  
Peng Fu ◽  
Yang Bai ◽  
Ligang Cui

As the most common malignancy in the endocrine system, thyroid cancer is usually diagnosed by discriminating the malignant nodules from the benign ones using ultrasonography, whose interpretation results primarily depends on the subjectivity judgement of the radiologists. In this study, we propose a novel cascade deep learning model to achieve automatic objective diagnose during ultrasound examination for assisting radiologists in recognizing benign and malignant thyroid nodules. First, the simplified U-net is employed to segment the region of interesting (ROI) of the thyroid nodules in each frame of the ultrasound image automatically. Then, to alleviate the limitation that medical training data are relatively small in size, the improved Conditional Variational Auto-Encoder (CVAE) learning the probability distribution of ROI images is trained to generate new images for data augmentation. Finally, ResNet50 is trained with both original and generated ROI images. As consequence, the deep learning model formed by the trained U-net and trained Resnet-50 cascade can achieve malignant thyroid nodule recognition with the accuracy of 87.4%, the sensitivity of 92%, and the specificity of 86.8%.


2020 ◽  
Vol 13 (4) ◽  
pp. 627-640 ◽  
Author(s):  
Avinash Chandra Pandey ◽  
Dharmveer Singh Rajpoot

Background: Sentiment analysis is a contextual mining of text which determines viewpoint of users with respect to some sentimental topics commonly present at social networking websites. Twitter is one of the social sites where people express their opinion about any topic in the form of tweets. These tweets can be examined using various sentiment classification methods to find the opinion of users. Traditional sentiment analysis methods use manually extracted features for opinion classification. The manual feature extraction process is a complicated task since it requires predefined sentiment lexicons. On the other hand, deep learning methods automatically extract relevant features from data hence; they provide better performance and richer representation competency than the traditional methods. Objective: The main aim of this paper is to enhance the sentiment classification accuracy and to reduce the computational cost. Method: To achieve the objective, a hybrid deep learning model, based on convolution neural network and bi-directional long-short term memory neural network has been introduced. Results: The proposed sentiment classification method achieves the highest accuracy for the most of the datasets. Further, from the statistical analysis efficacy of the proposed method has been validated. Conclusion: Sentiment classification accuracy can be improved by creating veracious hybrid models. Moreover, performance can also be enhanced by tuning the hyper parameters of deep leaning models.


Sign in / Sign up

Export Citation Format

Share Document