Introductory Incompressible Fluid Mechanics

2021 ◽  
Author(s):  
Frank H. Berkshire ◽  
Simon J. A. Malham ◽  
J. Trevor Stuart

This introduction to the mathematics of incompressible fluid mechanics and its applications keeps prerequisites to a minimum – only a background knowledge in multivariable calculus and differential equations is required. Part One covers inviscid fluid mechanics, guiding readers from the very basics of how to represent fluid flows through to the incompressible Euler equations and many real-world applications. Part Two covers viscous fluid mechanics, from the stress/rate of strain relation to deriving the incompressible Navier-Stokes equations, through to Beltrami flows, the Reynolds number, Stokes flows, lubrication theory and boundary layers. Also included is a self-contained guide on the global existence of solutions to the incompressible Navier-Stokes equations. Students can test their understanding on 100 progressively structured exercises and look beyond the scope of the text with carefully selected mini-projects. Based on the authors' extensive teaching experience, this is a valuable resource for undergraduate and graduate students across mathematics, science, and engineering.

2019 ◽  
Vol 40 (4) ◽  
pp. 2377-2398
Author(s):  
Gabriel R Barrenechea ◽  
Andreas Wachtel

Abstract Uniform inf-sup conditions are of fundamental importance for the finite element solution of problems in incompressible fluid mechanics, such as the Stokes and Navier–Stokes equations. In this work we prove a uniform inf-sup condition for the lowest-order Taylor–Hood pairs $\mathbb{Q}_2\times \mathbb{Q}_1$ and $\mathbb{P}_2\times \mathbb{P}_1$ on a family of affine anisotropic meshes. These meshes may contain refined edge and corner patches. We identify necessary hypotheses for edge patches to allow uniform stability and sufficient conditions for corner patches. For the proof, we generalize Verfürth’s trick and recent results by some of the authors. Numerical evidence confirms the theoretical results.


2005 ◽  
Vol 15 (10) ◽  
pp. 3103-3118 ◽  
Author(s):  
SONG WANG

In this paper we investigate numerically chaotic behaviors of incompressible fluid flows at large Reynolds numbers in triangular driven cavities. The problem is first formulated as incompressible Navier–Stokes equations with appropriate boundary and initial conditions. The equations are then solved numerically by an exponentially fitted finite volume method for various Reynolds numbers up to 107. Numerical experiments on flows in triangular cavities with different depths are performed. The numerical results show clearly that the transitions of the flows from lamina to turbulence/chaos follow some conventional routes to chaos.


Author(s):  
Jean-Yves Chemin ◽  
Benoit Desjardins ◽  
Isabelle Gallagher ◽  
Emmanuel Grenier

The purpose of this chapter is to give some historical landmarks to the reader. The concept of weak solutions certainly has its origin in mechanics; the article by C. Oseen [100] is referred to in the seminal paper by J. Leray. In that famous article, J. Leray proved the global existence of solutions of (NSν) in the sense of Definition 2.5, page 42, in the case when Ω = R3. The case when Ω is a bounded domain was studied by E. Hopf in. The study of the regularity properties of those weak solutions has been the purpose of a number of works. Among them, we recommend to the reader the fundamental paper of L. Caffarelli, R. Kohn and L. Nirenberg. In two space dimensions, J.-L. Lions and G. Prodi proved in [91] the uniqueness of weak solutions (this corresponds to Theorem 3.2, page 56, of this book). Theorem 3.3, page 58, of this book shows that regularity and uniqueness are two closely related issues. In the case of the whole space R3, theorems of that type have been proved by J. Leray in.


Water ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 82
Author(s):  
Getnet Kebede Demeke ◽  
Dereje Hailu Asfaw ◽  
Yilma Seleshi Shiferaw

Hydraulic structures are often complex and in many cases their designs require attention so that the flow behavior around hydraulic structures and their influence on the environment can be predicted accurately. Currently, more efficient computational fluid dynamics (CFD) codes can solve the Navier–Stokes equations in three-dimensions and free surface computation in a significantly improved manner. CFD has evolved into a powerful tool in simulating fluid flows. In addition, CFD with its advantages of lower cost and greater flexibility can reasonably predict the mean characteristics of flows such as velocity distributions, pressure distributions, and water surface profiles of complex problems in hydraulic engineering. In Ethiopia, Tendaho Dam Spillway was constructed recently, and one flood passed over the spillway. Although the flood was below the designed capacity, there was an overflow due to superelevation at the bend. Therefore, design of complex hydraulic structures using the state-of- art of 3D hydrodynamic modelling enhances the safety of the structures. 3D hydrodynamic modelling was used to verify the safety of the spillway using designed data and the result showed that the constructed hydraulic section is not safe unless it is modified.


1991 ◽  
Vol 113 (4) ◽  
pp. 334-343 ◽  
Author(s):  
R. W. Yeung ◽  
C.-F. Wu

The problem of a body oscillating in a viscous fluid with a free surface is examined. The Navier-Stokes equations and boundary conditions are linearized using the assumption of small body-motion to wavelength ratio. Generation and diffusion of vorticity, but not its convection, are accounted for. Rotational and irrotational Green functions for a divergent and a vorticity source are presented, with the effects of viscosity represented by a frequency Reynolds number Rσ = g2/νσ3. Numerical solutions for a pair of coupled integral equations are obtained for flows about a submerged cylinder, circular or square. Viscosity-modified added-mass and damping coefficients are developed as functions of frequency. It is found that as Rσ approaches infinity, inviscid-fluid results can be recovered. However, viscous effects are important in the low-frequency range, particularly when Rσ is smaller than O(104).


2019 ◽  
Vol 17 (06) ◽  
pp. 977-1003
Author(s):  
H. B. de Oliveira

The purpose of this work is to study the generalized Navier–Stokes equations with nonlinear viscosity that, in addition, can be fully anisotropic. Existence of very weak solutions is proved for the associated initial and boundary-value problem, supplemented with no-slip boundary conditions. We show that our existence result is optimal in some directions provided there is some compensation in the remaining directions. A particular simplification of the problem studied here, reduces to the Navier–Stokes equations with (linear) anisotropic viscosity used to model either the turbulence or the Ekman layer in atmospheric and oceanic fluid flows.


1976 ◽  
Vol 98 (2) ◽  
pp. 214-222 ◽  
Author(s):  
J. E. Zweig ◽  
H. J. Sneck

The general hydrodynamic behavior at small clearance Reynolds numbers of two fluids of different density and viscosity occupying the finite annular space between a rotating and stationary disk is explored using a simplified version of the Navier-Stokes equations which retains only the centrifugal force portion of the inertia terms. A criterion for selecting the annular flow fields that are compatible with physical reservoirs is established and then used to determine the conditions under which two-fluid flows in the annulus might be expected for specific fluid combinations.


Sign in / Sign up

Export Citation Format

Share Document