1995 ◽  
Vol 117 (2) ◽  
pp. 121-132 ◽  
Author(s):  
R. Du ◽  
M. A. Elbestawi ◽  
S. M. Wu

This paper presents a systematic study of various monitoring methods suitable for automated monitoring of manufacturing processes. In general, monitoring is composed of two phases: learning and classification. In the learning phase, the key issue is to establish the relationship between monitoring indices (selected signature features) and the process conditions. Based on this relationship and the current sensor signals, the process condition is then estimated in the classification phase. The monitoring methods discussed in this paper include pattern recognition, fuzzy systems, decision trees, expert systems and neural networks. A brief review of signal processing techniques commonly used in monitoring, such as statistical analysis, spectral analysis, system modeling, bi-spectral analysis and time-frequency distribution, is also included.


Author(s):  
Norden E. Huang ◽  
Kun Hu ◽  
Albert C. C. Yang ◽  
Hsing-Chih Chang ◽  
Deng Jia ◽  
...  

The Holo-Hilbert spectral analysis (HHSA) method is introduced to cure the deficiencies of traditional spectral analysis and to give a full informational representation of nonlinear and non-stationary data. It uses a nested empirical mode decomposition and Hilbert–Huang transform (HHT) approach to identify intrinsic amplitude and frequency modulations often present in nonlinear systems. Comparisons are first made with traditional spectrum analysis, which usually achieved its results through convolutional integral transforms based on additive expansions of an a priori determined basis, mostly under linear and stationary assumptions. Thus, for non-stationary processes, the best one could do historically was to use the time–frequency representations, in which the amplitude (or energy density) variation is still represented in terms of time. For nonlinear processes, the data can have both amplitude and frequency modulations (intra-mode and inter-mode) generated by two different mechanisms: linear additive or nonlinear multiplicative processes. As all existing spectral analysis methods are based on additive expansions, either a priori or adaptive, none of them could possibly represent the multiplicative processes. While the earlier adaptive HHT spectral analysis approach could accommodate the intra-wave nonlinearity quite remarkably, it remained that any inter-wave nonlinear multiplicative mechanisms that include cross-scale coupling and phase-lock modulations were left untreated. To resolve the multiplicative processes issue, additional dimensions in the spectrum result are needed to account for the variations in both the amplitude and frequency modulations simultaneously. HHSA accommodates all the processes: additive and multiplicative, intra-mode and inter-mode, stationary and non-stationary, linear and nonlinear interactions. The Holo prefix in HHSA denotes a multiple dimensional representation with both additive and multiplicative capabilities.


2003 ◽  
Vol 03 (03) ◽  
pp. L357-L364 ◽  
Author(s):  
C. R. Pinnegar ◽  
L. Mansinha

The S-transform is a method of time-local spectral analysis (also known as time-frequency analysis), a modified short-time Fourier Transform, in which the width of the analyzing window scales inversely with frequency, in analogy with continuous wavelet transforms. If the time series is non-stationary and consists of a mix of Gaussian white noise and a deterministic signal, though, this type of scaling leads to larger apparent noise amplitudes at higher frequencies. In this paper, we introduce a modified S-transform window with a different scaling function that addresses this undesirable characteristic.


Physiology ◽  
2017 ◽  
Vol 32 (1) ◽  
pp. 60-92 ◽  
Author(s):  
Michael J. Prerau ◽  
Ritchie E. Brown ◽  
Matt T. Bianchi ◽  
Jeffrey M. Ellenbogen ◽  
Patrick L. Purdon

During sleep, cortical and subcortical structures within the brain engage in highly structured oscillatory dynamics that can be observed in the electroencephalogram (EEG). The ability to accurately describe changes in sleep state from these oscillations has thus been a major goal of sleep medicine. While numerous studies over the past 50 years have shown sleep to be a continuous, multifocal, dynamic process, long-standing clinical practice categorizes sleep EEG into discrete stages through visual inspection of 30-s epochs. By representing sleep as a coarsely discretized progression of stages, vital neurophysiological information on the dynamic interplay between sleep and arousal is lost. However, by using principled time-frequency spectral analysis methods, the rich dynamics of the sleep EEG are immediately visible—elegantly depicted and quantified at time scales ranging from a full night down to individual microevents. In this paper, we review the neurophysiology of sleep through this lens of dynamic spectral analysis. We begin by reviewing spectral estimation techniques traditionally used in sleep EEG analysis and introduce multitaper spectral analysis, a method that makes EEG spectral estimates clearer and more accurate than traditional approaches. Through the lens of the multitaper spectrogram, we review the oscillations and mechanisms underlying the traditional sleep stages. In doing so, we will demonstrate how multitaper spectral analysis makes the oscillatory structure of traditional sleep states instantaneously visible, closely paralleling the traditional hypnogram, but with a richness of information that suggests novel insights into the neural mechanisms of sleep, as well as novel clinical and research applications.


10.14311/1654 ◽  
2012 ◽  
Vol 52 (5) ◽  
Author(s):  
Václav Turoň

This paper deals with the new time-frequency Short-Time Approximated Discrete Zolotarev Transform (STADZT), which is based on symmetrical Zolotarev polynomials. Due to the special properties of these polynomials, STADZT can be used for spectral analysis of stationary and non-stationary signals with the better time and frequency resolution than the widely used Short-Time Fourier Transform (STFT). This paper describes the parameters of STADZT that have the main influence on its properties and behaviour. The selected parameters include the shape and length of the segmentation window, and the segmentation overlap. Because STADZT is very similar to STFT, the paper includes a comparison of the spectral analysis of a non-stationary signal created by STADZT and by STFT with various settings of the parameters.


2011 ◽  
Vol 60 (1) ◽  
pp. 014701
Author(s):  
Sun Bin ◽  
Wang Er-Peng ◽  
Zheng Yong-Jun

Sign in / Sign up

Export Citation Format

Share Document