Wick Theorem, Gaussian Integration, and Feynman Rules for Fermions

2019 ◽  
pp. 110-119
1992 ◽  
Vol 06 (30) ◽  
pp. 1935-1941 ◽  
Author(s):  
X.L. LEI ◽  
M.W. WU

In the balance-equation theory for hot-electron transport, the fact that electrons and phonons have different temperatures in the initial density matrix prevents one from directly invoking the conventional statistical Wick theorem to carry out a high-order perturbation analysis. Nevertheless, the well-known Feynman rules and diagram technique are demonstrated to be applicable to any order of the electron—impurity and electron—phonon interactions within the Keldysh Green’s function formalism of this theory.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Sarah Hoback ◽  
Sarthak Parikh

Abstract We conjecture a simple set of “Feynman rules” for constructing n-point global conformal blocks in any channel in d spacetime dimensions, for external and exchanged scalar operators for arbitrary n and d. The vertex factors are given in terms of Lauricella hypergeometric functions of one, two or three variables, and the Feynman rules furnish an explicit power-series expansion in powers of cross-ratios. These rules are conjectured based on previously known results in the literature, which include four-, five- and six-point examples as well as the n-point comb channel blocks. We prove these rules for all previously known cases, as well as two new ones: the seven-point block in a new topology, and all even-point blocks in the “OPE channel.” The proof relies on holographic methods, notably the Feynman rules for Mellin amplitudes of tree-level AdS diagrams in a scalar effective field theory, and is easily applicable to any particular choice of a conformal block beyond those considered in this paper.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Gustav Mogull ◽  
Jan Plefka ◽  
Jan Steinhoff

Abstract A precise link is derived between scalar-graviton S-matrix elements and expectation values of operators in a worldline quantum field theory (WQFT), both used to describe classical scattering of black holes. The link is formally provided by a worldline path integral representation of the graviton-dressed scalar propagator, which may be inserted into a traditional definition of the S-matrix in terms of time-ordered correlators. To calculate expectation values in the WQFT a new set of Feynman rules is introduced which treats the gravitational field hμν(x) and position $$ {x}_i^{\mu}\left({\tau}_i\right) $$ x i μ τ i of each black hole on equal footing. Using these both the 3PM three-body gravitational radiation 〈hμv(k)〉 and 2PM two-body deflection $$ \Delta {p}_i^{\mu } $$ Δ p i μ from classical black hole scattering events are obtained. The latter can also be obtained from the eikonal phase of a 2 → 2 scalar S-matrix, which we show corresponds to the free energy of the WQFT.


1988 ◽  
Vol 37 (4) ◽  
pp. 938-945 ◽  
Author(s):  
Evalyn I. Gates ◽  
Kenneth L. Kowalski
Keyword(s):  

2018 ◽  
Vol 30 (3) ◽  
pp. 416-437 ◽  
Author(s):  
Liming Zhou ◽  
Ming Li ◽  
Bingkun Chen ◽  
Feng Li ◽  
Xiaolin Li

In this article, an inhomogeneous cell-based smoothed finite element method (ICS-FEM) was proposed to overcome the over-stiffness of finite element method in calculating transient responses of functionally graded magneto-electro-elastic structures. The ICS-FEM equations were derived by introducing gradient smoothing technique into the standard finite element model; a close-to-exact system stiffness was also obtained. In addition, ICS-FEM could be carried out with user-defined sub-routines in the business software now available conveniently. In ICS-FEM, the parameters at Gaussian integration point were adopted directly in the creation of shape functions; the computation process is simplified, for the mapping procedure in standard finite element method is not required; this also gives permission to utilize poor quality elements and few mesh distortions during large deformation. Combining with the improved Newmark scheme, several numerical examples were used to prove the accuracy, convergence, and efficiency of ICS-FEM. Results showed that ICS-FEM could provide solutions with higher accuracy and reliability than finite element method in analyzing models with Rayleigh damping. Such method is also applied to complex structures such as typical micro-electro-mechanical system–based functionally graded magneto-electro-elastic energy harvester. Hence, ICS-FEM can be a powerful tool for transient problems of functionally graded magneto-electro-elastic models with damping which is of great value in designing intelligence structures.


Author(s):  
John M. Cornwall ◽  
Joannis Papavassiliou ◽  
Daniele Binosi
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document