scholarly journals Non-uniform Estimates in the Approximation by the Irwin Law

2016 ◽  
Vol 55 (1) ◽  
pp. 112-118
Author(s):  
Kazimieras Padvelskis ◽  
Ruslan Prigodin

We consider an approximation of a cumulative distribution function F(x) by the cumulative distributionfunction G(x) of the Irwin law. In this case, a function F(x) can be cumulative distribution functions of sums (products) ofindependent (dependent) random variables. Remainder term of the approximation is estimated by the cumulant method.The cumulant method is used by introducing special cumulants, satisfying the V. Statulevičius type condition. The mainresult is a nonuniform bound for the difference |F(x)-G(x)| in terms of special cumulants of the symmetric cumulativedistribution function F(x).

Symmetry ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2108
Author(s):  
Weaam Alhadlaq ◽  
Abdulhamid Alzaid

Archimedean copulas form a very wide subclass of symmetric copulas. Most of the popular copulas are members of the Archimedean copulas. These copulas are obtained using real functions known as Archimedean generators. In this paper, we observe that under certain conditions the cumulative distribution functions on (0, 1) and probability generating functions can be used as Archimedean generators. It is shown that most of the well-known Archimedean copulas can be generated using such distributions. Further, we introduced new Archimedean copulas.


2017 ◽  
Vol 49 (2) ◽  
pp. 388-410 ◽  
Author(s):  
Philip A. Ernst ◽  
Ilie Grigorescu

AbstractWe consider two players, starting withmandnunits, respectively. In each round, the winner is decided with probability proportional to each player's fortune, and the opponent loses one unit. We prove an explicit formula for the probabilityp(m,n) that the first player wins. Whenm~Nx0,n~Ny0, we prove the fluid limit asN→ ∞. Whenx0=y0,z→p(N,N+z√N) converges to the standard normal cumulative distribution function and the difference in fortunes scales diffusively. The exact limit of the time of ruin τNis established as (T- τN) ~N-βW1/β, β = ¼,T=x0+y0. Modulo a constant,W~ χ21(z02/T2).


2019 ◽  
Vol 11 (1) ◽  
Author(s):  
Gina Katherine Sierra Paez ◽  
Matthew Daigle ◽  
Kai Goebel

Estimating accurate Time-of-Failure (ToF) of a system is key in making the decisions that impact operational safety and optimize cost. In this context, it is interesting to note that different approaches have been explored to tackle the problem of estimating ToF. The difference is in part characterized by different definitions of the hazard zones. The conventional definition for the cumulative distribution function (CDF) calculation is assumed to have well-defined hazard zones, that is, hazard zones defined as a function of the system state trajectory. An alternate method suggests the use of hazard zones defined as a function of the system state at time , instead of hazard zones defined as a function of system state up to and including time k (Acuña and Orchard 2018, 2017). This paper explores these differences and their impact on ToF estimation. Results for the conventional CDF definition indicated that, (i) the cumulative distribution function is always an increasing function of time, even when realizations of the degradation process are not monotonic, (ii) the sum of all probabilities is always 1 and does not need to be normalized, and (iii) all probabilities are positive and less than or equal to 1. Similar results are not observed for CDF calculation with hazard zones defined as a function only of the system state at time k. Results for ToF estimation using Acuña's definition differ, suggesting that there is an underlying assumption of independence in the hazard zone definition.  Therefore, we present an alternate definition of hazard zone which guarantees the properties of a well-defined CDF with a more straightforward ToF definition.


Mathematics ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 772 ◽  
Author(s):  
Valeriy A. Naumov ◽  
Yuliya V. Gaidamaka ◽  
Konstantin E. Samouylov

Queueing systems with random resource requirements, in which an arriving customer, in addition to a server, demands a random amount of resources from a shared resource pool, have proved useful to analyze wireless communication networks. The stationary distributions of such queuing systems are expressed in terms of truncated convolution powers of the cumulative distribution function of the resource requirements. Discretization of the cumulative distribution function and the application of the fast Fourier transform are a traditional way of calculating convolutions. We suggest finding truncated convolution powers of the cumulative distribution functions by calculating the convolution powers of the truncated cumulative distribution functions via fast Fourier transform. This radically decreases computational complexity. We introduce the concept of resource load and investigate the accuracy of the proposed method at low and high resource loads. It is shown that the proposed method makes it possible to quickly and accurately calculate truncated convolution powers required for the analysis of queuing systems with random resource requirements.


Author(s):  
RONALD R. YAGER

We look at the issue of obtaining a variance like measure associated with probability distributions over ordinal sets. We call these dissonance measures. We specify some general properties desired in these dissonance measures. The centrality of the cumulative distribution function in formulating the concept of dissonance is pointed out. We introduce some specific examples of measures of dissonance.


2017 ◽  
Vol 20 (5) ◽  
pp. 939-951
Author(s):  
Amal Almarwani ◽  
Bashair Aljohani ◽  
Rasha Almutairi ◽  
Nada Albalawi ◽  
Alya O. Al Mutairi

Sign in / Sign up

Export Citation Format

Share Document