MODEL SELECTION AND AVERAGING OF HEALTH COSTS IN EPISODE TREATMENT GROUPS

2016 ◽  
Vol 47 (1) ◽  
pp. 153-167 ◽  
Author(s):  
Shujuan Huang ◽  
Brian Hartman ◽  
Vytaras Brazauskas

Episode Treatment Groups (ETGs) classify related services into medically relevant and distinct units describing an episode of care. Proper model selection for those ETG-based costs is essential to adequately price and manage health insurance risks. The optimal claim cost model (or model probabilities) can vary depending on the disease. We compare four potential models (lognormal, gamma, log-skew-t and Lomax) using four different model selection methods (AIC and BIC weights, Random Forest feature classification and Bayesian model averaging) on 320 ETGs. Using the data from a major health insurer, which consists of more than 33 million observations from 9 million claimants, we compare the various methods on both speed and precision, and also examine the wide range of selected models for the different ETGs. Several case studies are provided for illustration. It is found that Random Forest feature selection is computationally efficient and sufficiently accurate, hence being preferred in this large data set. When feasible (on smaller data sets), Bayesian model averaging is preferred because of the posterior model probabilities.

2021 ◽  
Author(s):  
Carlos R Oliveira ◽  
Eugene D Shapiro ◽  
Daniel M Weinberger

Vaccine effectiveness (VE) studies are often conducted after the introduction of new vaccines to ensure they provide protection in real-world settings. Although susceptible to confounding, the test-negative case-control study design is the most efficient method to assess VE post-licensure. Control of confounding is often needed during the analyses, which is most efficiently done through multivariable modeling. When a large number of potential confounders are being considered, it can be challenging to know which variables need to be included in the final model. This paper highlights the importance of considering model uncertainty by re-analyzing a Lyme VE study using several confounder selection methods. We propose an intuitive Bayesian Model Averaging (BMA) framework for this task and compare the performance of BMA to that of traditional single-best-model-selection methods. We demonstrate how BMA can be advantageous in situations when there is uncertainty about model selection by systematically considering alternative models and increasing transparency.


2016 ◽  
Author(s):  
Joram Soch ◽  
Achim Pascal Meyer ◽  
John-Dylan Haynes ◽  
Carsten Allefeld

AbstractIn functional magnetic resonance imaging (fMRI), model quality of general linear models (GLMs) for first-level analysis is rarely assessed. In recent work (Soch et al., 2016: “How to avoid mismodelling in GLM-based fMRI data analysis: cross-validated Bayesian model selection”, NeuroImage, vol. 141, pp. 469-489; DOI: 10.1016/j. neuroimage.2016.07.047), we have introduced cross-validated Bayesian model selection (cvBMS) to infer the best model for a group of subjects and use it to guide second-level analysis. While this is the optimal approach given that the same GLM has to be used for all subjects, there is a much more efficient procedure when model selection only addresses nuisance variables and regressors of interest are included in all candidate models. In this work, we propose cross-validated Bayesian model averaging (cvBMA) to improve parameter estimates for these regressors of interest by combining information from all models using their posterior probabilities. This is particularly useful as different models can lead to different conclusions regarding experimental effects and the most complex model is not necessarily the best choice. We find that cvBMS can prevent not detecting established effects and that cvBMA can be more sensitive to experimental effects than just using even the best model in each subject or the model which is best in a group of subjects.


Energies ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 295
Author(s):  
Matteo Spada ◽  
Peter Burgherr

The accident risk of severe (≥5 fatalities) accidents in fossil energy chains (Coal, Oil and Natural Gas) is analyzed. The full chain risk is assessed for Organization for Economic Co-operation and Development (OECD), 28 Member States of the European Union (EU28) and non-OECD countries. Furthermore, for Coal, Chinese data are analysed separately for three different periods, i.e., 1994–1999, 2000–2008 and 2009–2016, due to different data sources, and highly incomplete data prior to 1994. A Bayesian Model Averaging (BMA) is applied to investigate the risk and associated uncertainties of a comprehensive accident data set from the Paul Scherrer Institute’s ENergy-related Severe Accident Database (ENSAD). By means of BMA, frequency and severity distributions were established, and a final posterior distribution including model uncertainty is constructed by a weighted combination of the different models. The proposed approach, by dealing with lack of data and lack of knowledge, allows for a general reduction of the uncertainty in the calculated risk indicators, which is beneficial for informed decision-making strategies under uncertainty.


2015 ◽  
Vol 51 (4) ◽  
pp. 2825-2846 ◽  
Author(s):  
Thomas Wöhling ◽  
Anneli Schöniger ◽  
Sebastian Gayler ◽  
Wolfgang Nowak

2008 ◽  
Vol 47 (12) ◽  
pp. 3072-3088 ◽  
Author(s):  
Stevie Roquelaure ◽  
Thierry Bergot

Abstract At main international airports, air traffic safety and economic issues related to poor visibility conditions are crucial. Meteorologists face the challenge of supplying airport authorities with accurate forecasts of fog and cloud ceiling. These events are difficult to forecast because conditions evolve on short space and time scales during their life cycle. To obtain accurate forecasts of fog and low clouds, the Code de Brouillard à l’Echelle Locale (the local scale fog code)–Interactions between Soil, Biosphere, and Atmosphere (COBEL–ISBA) local numerical forecast system was implemented at Charles de Gaulle International Airport in Paris. However, even with dedicated observations and initialization, uncertainties remain in both initial conditions and mesoscale forcings. A local ensemble prediction system (LEPS) has been designed around the COBEL–ISBA numerical model and tested to assess the predictability of low visibility procedures events, defined as a visibility less than 600 m and/or a ceiling below 60 m. This work describes and evaluates a local ensemble strategy for the prediction of low visibility procedures. A Bayesian model averaging method has been applied to calibrate the ensemble. The study shows that the use of LEPS for specific local event prediction is well adapted and useful for low visibility prediction in the aeronautic context. Moreover, a wide range of users, especially those with low cost–loss ratios, can expect economic savings with the use of this probabilistic system.


2013 ◽  
Vol 141 (6) ◽  
pp. 2107-2119 ◽  
Author(s):  
J. McLean Sloughter ◽  
Tilmann Gneiting ◽  
Adrian E. Raftery

Abstract Probabilistic forecasts of wind vectors are becoming critical as interest grows in wind as a clean and renewable source of energy, in addition to a wide range of other uses, from aviation to recreational boating. Unlike other common forecasting problems, which deal with univariate quantities, statistical approaches to wind vector forecasting must be based on bivariate distributions. The prevailing paradigm in weather forecasting is to issue deterministic forecasts based on numerical weather prediction models. Uncertainty can then be assessed through ensemble forecasts, where multiple estimates of the current state of the atmosphere are used to generate a collection of deterministic predictions. Ensemble forecasts are often uncalibrated, however, and Bayesian model averaging (BMA) is a statistical way of postprocessing these forecast ensembles to create calibrated predictive probability density functions (PDFs). It represents the predictive PDF as a weighted average of PDFs centered on the individual bias-corrected forecasts, where the weights reflect the forecasts’ relative contributions to predictive skill over a training period. In this paper the authors extend the BMA methodology to use bivariate distributions, enabling them to provide probabilistic forecasts of wind vectors. The BMA method is applied to 48-h-ahead forecasts of wind vectors over the North American Pacific Northwest in 2003 using the University of Washington mesoscale ensemble and is shown to provide better-calibrated probabilistic forecasts than the raw ensemble, which are also sharper than probabilistic forecasts derived from climatology.


Sign in / Sign up

Export Citation Format

Share Document