Three-dimensional visualization of nanostructured materials using focused ion beam tomography

2010 ◽  
pp. 295-317
Author(s):  
Derren Dunn ◽  
Alan J. Kubis ◽  
Robert Hull
2011 ◽  
Vol 17 (2) ◽  
pp. 240-245 ◽  
Author(s):  
N. Payraudeau ◽  
D. McGrouther ◽  
K.U. O'Kelly

AbstractIn this study, we present a fully automated method to investigate and reconstruct the three-dimensional crack structure beneath an indent in a highly insulating material. This work concentrates on issues arising from a long automatic acquisition process, the insulating nature of the specimen, and the introduction of minimal damage to the original cracks resulting from indentation.


2008 ◽  
Vol 59 (7) ◽  
pp. 877-882 ◽  
Author(s):  
E. Keehan ◽  
L. Karlsson ◽  
H.K.D.H. Bhadeshia ◽  
Mattias Thuvander

MRS Bulletin ◽  
2007 ◽  
Vol 32 (5) ◽  
pp. 408-416 ◽  
Author(s):  
Michael D. Uchic ◽  
Lorenz Holzer ◽  
Beverley J. Inkson ◽  
Edward L. Principe ◽  
Paul Munroe

AbstractThis article reviews recent developments and applications of focused ion beam (FIB) microscopes for three-dimensional (3D) materials characterization at the microscale through destructive serial sectioning experiments. Precise ion milling—in combination with electron-optic—based imaging and surface analysis methods—can be used to iteratively section through metals, ceramics, polymers, and electronic or biological materials to reveal the true size, shape, and distribution of microstructural features. Importantly, FIB tomographic experiments cover a critical size-scale gap that cannot be obtained with other instrumentation. The experiments encompass material volumes that are typically larger than 1000 μm3, with voxel dimensions approaching tens of nanometers, and can contain structural, chemical, and crystallographic information. This article describes the current state of the art of this experimental methodology and provides examples of specific applications to 3D materials characterization.


2006 ◽  
Vol 88 (26) ◽  
pp. 263103 ◽  
Author(s):  
Alan J. Kubis ◽  
Thomas E. Vandervelde ◽  
John C. Bean ◽  
Derren N. Dunn ◽  
Robert Hull

Author(s):  
T. Yaguchi ◽  
M. Konno ◽  
T. Kamino ◽  
M. Ogasawara ◽  
K. Kaji ◽  
...  

Abstract A technique for preparation of a pillar shaped sample and its multi-directional observation of the sample using a focused ion beam (FIB) / scanning transmission electron microscopy (STEM) system has been developed. The system employs an FIB/STEM compatible sample rotation holder with a specially designed rotation mechanism, which allows the sample to be rotated 360 degrees [1-3]. This technique was used for the three dimensional (3D) elemental mapping of a contact plug of a Si device in 90 nm technology. A specimen containing a contact plug was shaped to a pillar sample with a cross section of 200 nm x 200 nm and a 5 um length. Elemental analysis was performed with a 200 kV HD-2300 STEM equipped with the EDAX genesis Energy dispersive X-ray spectroscopy (EDX) system. Spectrum imaging combined with multivariate statistical analysis (MSA) [4, 5] was used to enhance the weak X-ray signals of the doped area, which contain a low concentration of As-K. The distributions of elements, especially the dopant As, were successfully enhanced by MSA. The elemental maps were .. reconstructed from the maps.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jiyu Sun ◽  
Wei Wu ◽  
Limei Tian ◽  
Wei Li ◽  
Fang Zhang ◽  
...  

AbstractNot only does the Dynastes tityus beetle display a reversible color change controlled by differences in humidity, but also, the elytron scale can change color from yellow-green to deep-brown in specified shapes. The results obtained by focused ion beam-scanning electron microscopy (FIB-SEM), show that the epicuticle (EPI) is a permeable layer, and the exocuticle (EXO) is a three-dimensional photonic crystal. To investigate the mechanism of the reversible color change, experiments were conducted to determine the water contact angle, surface chemical composition, and optical reflectance, and the reflective spectrum was simulated. The water on the surface began to permeate into the elytron via the surface elemental composition and channels in the EPI. A structural unit (SU) in the EXO allows local color changes in varied shapes. The reflectance of both yellow-green and deep-brown elytra increases as the incidence angle increases from 0° to 60°. The microstructure and changes in the refractive index are the main factors that influence the process of reversible color change. According to the simulation, the lower reflectance causing the color change to deep-brown results from water infiltration, which increases light absorption. Meanwhile, the waxy layer has no effect on the reflection of light. This study lays the foundation to manufacture engineered photonic materials that undergo controllable changes in iridescent color.


Sign in / Sign up

Export Citation Format

Share Document