The hydrogen lines

Keyword(s):  
2015 ◽  
Vol 71-72 ◽  
pp. 71-74
Author(s):  
N. Fabas ◽  
A. Chiavassa ◽  
F. Millour ◽  
M. Wittkowski
Keyword(s):  

1989 ◽  
Vol 114 ◽  
pp. 296-299
Author(s):  
J. L. Provencal ◽  
J. C. Clemens ◽  
G. Henry ◽  
B. P. Hine ◽  
R. E. Nather ◽  
...  

White dwarf stars provide important boundary conditions for the understanding of stellar evolution. An adequate understanding of even these simple stars is impossible without detailed knowledge of their interiors. PG1346+082, an interacting binary white dwarf system, provides a unique opportunity to view the interior of one degenerate as it is brought to light in the accretion disk of the second star as the primary strips material from its less massive companion (see Wood et at. 1987).PG1346+082 is a photometric variable with a four magnitude variation over a four to five day quasi-period. A fast Fourier transform (FFT) of the light curve shows a complex, time-dependent structure of harmonics. PG1346+082 exhibits flickering – the signature of mass transfer. The optical spectra of the system contain weak emission features during minimum and broad absorption at all other times. This could be attributed to pressure broadening in the atmosphere of a compact object, or to a combination of pressure broadening and doppler broadening in a disk surrounding the compact accretor. No hydrogen lines are observed and the spectra are dominated by neutral helium. The spectra also display variable asymmetric line profiles.


2008 ◽  
Author(s):  
J. Rosato ◽  
H. Capes ◽  
S. Ferri ◽  
L. Godbert-Mouret ◽  
M. Koubiti ◽  
...  
Keyword(s):  

1995 ◽  
Vol 10 ◽  
pp. 588-590
Author(s):  
Dayal T. Wickramasinghe

White dwarfs are one of the most readily studied end products of stellarevolution. Their observed properties have provided and continue to provide important constraints for the theory of stellar evolution. Likewise, a study of magnetism in white dwarfs provides unique insights into the origin and evolution of magnetic fields in stars.Spectacular progress has been made on the specific problem of the structure of the hydrogen atom in strong fields. Energy levels and transition probabilities are now known for all low lying states of hydrogen for the entire range of field strengths appropriate to white dwarfs and neutron stars (104-1013G) (Rosner et al 1984, Forster et al 1984 and Henry and O’Connell 1984). These calculations resulted in the identification of spectral features in the magnetic white dwarf Grw+70°8247 which had remained unidentified for over 50 years (Minkowski 1938), with Zeeman shifted hydrogen lines in a magnetic field of 100 -320 MG ((eg Wickamasinghe and Ferrano 1989). Several other strong field magnetic white dwarfs have since been discovered through hydrogen Zeeman spectroscopy. The data presently at hand show that most hydrogen rich magnetic white dwarfs have complex non-dipolar field structures with strong evidence for higher order multipole components.


Astrophysics ◽  
1979 ◽  
Vol 15 (1) ◽  
pp. 54-59
Author(s):  
N. S. Polosukhina ◽  
A. G. Shcherbakov ◽  
V. P. Malanushenko

1993 ◽  
Vol 155 ◽  
pp. 340-340 ◽  
Author(s):  
R.E.S. Clegg ◽  
N. A. Walton ◽  
M.J. Barlow

It is not really known how low and intermediate mass stars eject mass to form PNs. We present preliminary results from a programme of near–IR imaging, in which we study a sequence of objects, from extreme AGB stars through proto–planetaries to young, compact PNs. We aim to study the sequence of morphologies, to see where the onset of bipolar shaping occurs, and to use the IR molecular hydrogen lines to map neutral regions around ionized nebulae.


1998 ◽  
pp. 43-53
Author(s):  
A. Kubicela ◽  
J. Arsenijevic ◽  
L.C. Popovic ◽  
N. Trajkovic ◽  
E. Bon

Here we have juxtaposed two distant cosmic locations of the Sun and AGN where neutral hydrogen appears in a close connection with hot coronas. Besides the solar photosphere, chromosphere and prominences where the presence of neutral hydrogen is well established, its emission quite high in hot solar corona is still puzzling. Some of earlier observations where H? emission in solar corona was detected in eclipse and in daily coronagraphic observations are reviewed. A proper theoretical explanation of this cold chromospheric-type emission in the hot corona does not exist yet. On the other side, a similar emission of hydrogen lines is present in Active Galactic Nuclei (AGNs). Much research work is currently being done in this field. We outline some of the concepts of the AGN structure prevailing in the astrophysics today.


Sign in / Sign up

Export Citation Format

Share Document