Magnetic Memory

Author(s):  
Denny D. Tang ◽  
Yuan-Jen Lee
Keyword(s):  
Author(s):  
Olle Eriksson ◽  
Anders Bergman ◽  
Lars Bergqvist ◽  
Johan Hellsvik

The time-integrated amount of data and stored information, is doubled roughly every eighteen months, and since the majority of the worlds information is stored in magnetic media, the possibility to write and retrieve information in a magnetic material at ever greater speed and with lower energy consumption, has obvious benefits for our society. Hence the seemingly simple switching of a magnetic unit, a bit, is a crucial process which defines how efficiently information can be stored and retrieved from a magnetic memory. Of particular interest here are the concepts of ultrafast magnetism and all-optical control of magnetism which have in recent decades become the basis for an intense research field. The motivation is natural; the mechanisms behind these phenomena are far from trivial and the technological implications are huge.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ruyi Chen ◽  
Qirui Cui ◽  
Liyang Liao ◽  
Yingmei Zhu ◽  
Ruiqi Zhang ◽  
...  

AbstractPerpendicularly magnetized synthetic antiferromagnets (SAF), possessing low net magnetization and high thermal stability as well as easy reading and writing characteristics, have been intensively explored to replace the ferromagnetic free layers of magnetic tunnel junctions as the kernel of spintronic devices. So far, utilizing spin-orbit torque (SOT) to realize deterministic switching of perpendicular SAF have been reported while a large external magnetic field is typically needed to break the symmetry, making it impractical for applications. Here, combining theoretic analysis and experimental results, we report that the effective modulation of Dzyaloshinskii-Moriya interaction by the interfacial crystallinity between ferromagnets and adjacent heavy metals plays an important role in domain wall configurations. By adjusting the domain wall configuration between Bloch type and Néel type, we successfully demonstrate the field-free SOT-induced magnetization switching in [Co/Pd]/Ru/[Co/Pd] SAF devices constructed with a simple wedged structure. Our work provides a practical route for utilization of perpendicularly SAF in SOT devices and paves the way for magnetic memory devices with high density, low stray field, and low power consumption.


Sign in / Sign up

Export Citation Format

Share Document