Fine root mass and fine root production in tropical moist forests as dependent on soil, climate, and elevation

2011 ◽  
pp. 428-444 ◽  
Author(s):  
D. Hertel ◽  
Ch. Leuschner ◽  
L. A. Bruijnzeel ◽  
F. N. Scatena ◽  
L. S. Hamilton
2019 ◽  
Vol 7 (9) ◽  
pp. 230-245
Author(s):  
Abebe Worku ◽  
Masresha Fetene ◽  
Solomomn Zewdie ◽  
Yoseph Assefa

Fine roots biomass of Erica trimera was investigated at three altitudinal levels, i.e. 3000, 3300, and 3500 masl across  three depth classes (0-10, 10-20, and 20-40 cm) for each of the four seasons of Bale Mountains by using sequential soil coring. Soil chemical characteristics and moisture were analyzed for all of the three altitudinal levels and depth classes. The annual fine root production of the species was calculated based on min-max method. Fine root production increased markedly from 3270 kg. ha-1. yr-1 at 3000 masl and 2850 kg. ha-1. yr-1 at 3300 masl to 9987 kg. ha-1. yr-1 at 3500 masl. Total nitrogen, available phosphorous, organic carbon, moisture content and PH of the soil increased significantly as altitude increased. In the two lower altitudinal levels, 3000 and 3300masl, fine root mass and biomass decreased as depth increased, but at the higher altitude (3500 masl) fine root tended to more concentrated at the deeper depths while  the availability of soil nutrient and soil acidity showed a tendency to decreased as depth increased at all of the three sites. The highest fine root mass and biomass was recorded at the major rainy season followed by the transition period, the small rainy and dry period, in that order. The highest fine root mass during the major rainy season and lowest fine root mass in the dry season indicated that soil moisture was critical factor in governing the pattern of root growth in this ecosystem.


2014 ◽  
Vol 59 ◽  
pp. 84-90 ◽  
Author(s):  
A. Montagnoli ◽  
M. Terzaghi ◽  
G.S. Scippa ◽  
D. Chiatante

2005 ◽  
Vol 272 (1-2) ◽  
pp. 1-10 ◽  
Author(s):  
L. B. Guo ◽  
M. J. Halliday ◽  
S. J. M. Siakimotu ◽  
R. M. Gifford

Forests ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 940
Author(s):  
Bohdan Konôpka ◽  
Milan Barna ◽  
Michal Bosela ◽  
Martin Lukac

This study reports on an investigation of fine root and foliage productivity in forest stands dominated by European beech (Fagus sylvatica L.) and exposed to contrasting intensities of mature forest harvesting. The main aim of this study was to consider the long-term effects of canopy manipulation on resource acquisition biomass compartments in beech. We made use of an experiment established in 1989, when five different light availability treatments were started in plots within a uniform forest stand, ranging from no reduction in tree density to full mature forest removal. We measured fine root standing stock in the 0–30 cm soil layer by coring in 2013 and then followed annual fine root production (in-growth cores) and foliage production (litter baskets) in 2013–2015. We found that the plot where the tree density was reduced by 30% had the lowest foliage and the highest fine root production. In 2013, this plot had the highest fine root turnover rate (0.8 year−1), while this indicator of fine root dynamics was much lower in the other four treatments (around 0.3 year−1). We also found that the annual fine root production represented around two thirds of annual foliage growth on the mass basis in all treatments. While our findings support the maintenance of source and sink balance in woody plants, we also found a long-lasting effect of tree density manipulation on investment into resource acquisition compartments in beech forests.


1987 ◽  
Vol 17 (8) ◽  
pp. 909-912 ◽  
Author(s):  
W. A. Kurz ◽  
J. P. Kimmins

Fine root production rates are most commonly calculated from periodic measurements of live and dead fine root biomass. The accuracy of production estimates based on this method is very sensitive to violations of the inherent assumptions, particularly the assumption that the processes of fine root production and mortality are temporally separate. A simple model was used to simulate data for a variety of seasonal patterns of live and dead fine root biomass. Fine root production and mortality rates were calculated from these simulated data using two different computational methods. Comparison of the calculated rates with the known rates (the rates used to generate the seasonal patterns) revealed that violations of the above assumptions can result in inaccurate rate estimates. When fine root production and mortality occur simultaneously within a sampling interval, the calculated production rate will greatly underestimate the true value. Additional error in the rate estimates may result from sampling error associated with the fine root biomass data. The model suggested that sampling error can cause either overestimation or underestimation of fine root production.


2007 ◽  
Vol 37 (10) ◽  
pp. 1954-1965 ◽  
Author(s):  
Oscar J. Valverde-Barrantes

Although significant advances have been made in understanding terrestrial carbon cycling, there is still a large uncertainty about the variability of carbon (C) fluxes at local scales. Using a carbon mass-balance approach, I investigated the relationships between fine detritus production and soil respiration for five tropical tree species established on 16-year-old plantations. Total fine detritus production ranged from 0.69 to 1.21 kg C·m–2·year–1 with significant differences among species but with no correlation between litterfall and fine-root growth. Soil CO2 emissions ranged from 1.61 to 2.36 kg C·m–2·year–1 with no significant differences among species. Soil respiration increased with fine-root production but not with litterfall, suggesting that soil C emissions may depend more on belowground inputs or that both fine root production and soil respiration are similarly influenced by an external factor. Estimates of root + rhizosphere respiration comprised 52% of total soil respiration on average, and there was no evidence that rhizosphere respiration was associated with fine-root growth rates among species. These results suggest that inherent differences in fine-root production among species, rather than differences in aboveground litterfall, might play a main role explaining local-scale, among-forest variations in soil C emissions.


Trees ◽  
2015 ◽  
Vol 30 (2) ◽  
pp. 571-578 ◽  
Author(s):  
Mizue Ohashi ◽  
Aiko Nakano ◽  
Yasuhiro Hirano ◽  
Kyotaro Noguchi ◽  
Hidetoshi Ikeno ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document