scholarly journals D.05 SREDA-like temporal EEG seizure pattern in LGI1-antibody mediated encephalitis

Author(s):  
C Steriade ◽  
S Mirsattari ◽  
BJ Murray ◽  
R Wennberg

Background: Leucine-rich glioma inactived-1 (LGI1) antibodies are associated with limbic encephalitis and distinctive seizure types, which are typically immunotherapy-responsive. While nonspecific EEG abnormalities are commonly seen, specific EEG characteristics are not currently understood to be useful for suspecting the clinical diagnosis. Based on initial observations in two patients, we analyzed the EEG recordings in a larger series of patients and describe a novel ictal pattern that can suggest the diagnosis of LGI1-antibody mediated encephalitis, even in the absence of common clinical features. Methods: Clinical and EEG data were collected in nine patients with LGI1 antibodies. Results: Psychiatric and cognitive symptoms were common, as were tonic seizures associated with EEG electrodecremental events (often with the so-called faciobrachial dystonic semiology). A rarity or absence of interictal epileptiform discharges contrasted with frequent subclinical temporal lobe seizures in some patients, which at times showed characteristics similar to subclinical rhythmic electrographic discharges of adults (SREDA), including sensitivity to hyperventilation. Conclusions: LGI1-antibody mediated encephalitis may be associated with tonic seizures and corresponding electrodecremental events, as well as an unusual SREDA-like pattern of frequent subclinical temporal lobe seizures, which may be triggered by hyperventilation, all in the setting of rare interictal epileptiform discharges.

Author(s):  
Pierre Gloor

ABSTRACT:Preoperative EEG investigations of patients with temporal lobe seizures include extracranial interictal and ictal recordings during wakefulness and sleep, including long-term EEG and video-monitoring. Interictal epileptiform discharges when evaluated conservatively and in conjunction with other EEG and non-EEG localizing information, provide valuable guidance for the identification of the area to be resected, as do ictal recordings. When extracranial EEG features in conjunction with non-EEG data provide conflicting localizing information, intracranial recordings with stereotaxically implanted depth and epidural electrodes are used. Intracranial recordings must be designed to avoid biasing the exploration strategy in favor of one's preferred localizing hypothesis. Patients with evidence for bitemporal epileptogenic dysfunction in extracranial EEG recordings are suitable candidates for intracranial recordings. The majority of the patients explored in this manner show that all or more than 80% of their seizures arise from one temporal lobe. Excision of that lobe yields satisfactory results in a fair proportion of these patients. The number of satisfactory outcomes is, however, still somewhat less than in patients with unilateral temporal foci in extracranial EEG recordings.


Author(s):  
Mohammed M. Jan ◽  
Mark Sadler ◽  
Susan R. Rahey

Electroencephalography (EEG) is an important tool for diagnosing, lateralizing and localizing temporal lobe seizures. In this paper, we review the EEG characteristics of temporal lobe epilepsy (TLE). Several “non-standard” electrodes may be needed to further evaluate the EEG localization, Ictal EEG recording is a major component of preoperative protocols for surgical consideration. Various ictal rhythms have been described including background attenuation, start-stop-start phenomenon, irregular 2-5 Hz lateralized activity, and 5-10 Hz sinusoidal waves or repetitive epileptiform discharges. The postictal EEG can also provide valuable lateralizing information. Postictal delta can be lateralized in 60% of patients with TLE and is concordant with the side of seizure onset in most patients. When patients are being considered for resective surgery, invasive EEG recordings may be needed. Accurate localization of the seizure onset in these patients is required for successful surgical management.


2017 ◽  
Vol 49 (5) ◽  
pp. 335-341
Author(s):  
Hannah Doudoux ◽  
Kristina Skaare ◽  
Thomas Geay ◽  
Philippe Kahane ◽  
Jean L. Bosson ◽  
...  

Objective. The optimal duration of routine EEG (rEEG) has not been determined on a clinical basis. This study aims to determine the time required to obtain relevant information during rEEG with respect to the clinical request. Method. All rEEGs performed over 3 months in unselected patients older than 14 years in an academic hospital were analyzed retrospectively. The latency required to obtain relevant information was determined for each rEEG by 2 independent readers blinded to the clinical data. EEG final diagnoses and latencies were analyzed with respect to the main clinical requests: subacute cognitive impairment, spells, transient focal neurologic manifestation or patients referred by epileptologists. Results. From 430 rEEGs performed in the targeted period, 364 were analyzed: 92% of the pathological rEEGs were provided within the first 10 minutes of recording. Slowing background activity was diagnosed from the beginning, whereas interictal epileptiform discharges were recorded over time. Moreover, the time elapsed to demonstrate a pattern differed significantly in the clinical groups: in patients with subacute cognitive impairment, EEG abnormalities appeared within the first 10 minutes, whereas in the other groups, data could be provided over time. Conclusion. Patients with subacute cognitive impairment differed from those in the other groups significantly in the elapsed time required to obtain relevant information during rEEG, suggesting that 10-minute EEG recordings could be sufficient, arguing in favor of individualized rEEG. However, this conclusion does not apply to intensive care unit patients.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jan Pyrzowski ◽  
Jean- Eudes Le Douget ◽  
Amal Fouad ◽  
Mariusz Siemiński ◽  
Joanna Jędrzejczak ◽  
...  

AbstractClinical diagnosis of epilepsy depends heavily on the detection of interictal epileptiform discharges (IEDs) from scalp electroencephalographic (EEG) signals, which by purely visual means is far from straightforward. Here, we introduce a simple signal analysis procedure based on scalp EEG zero-crossing patterns which can extract the spatiotemporal structure of scalp voltage fluctuations. We analyzed simultaneous scalp and intracranial EEG recordings from patients with pharmacoresistant temporal lobe epilepsy. Our data show that a large proportion of intracranial IEDs manifest only as subtle, low-amplitude waveforms below scalp EEG background and could, therefore, not be detected visually. We found that scalp zero-crossing patterns allow detection of these intracranial IEDs on a single-trial level with millisecond temporal precision and including some mesial temporal discharges that do not propagate to the neocortex. Applied to an independent dataset, our method discriminated accurately between patients with epilepsy and normal subjects, confirming its practical applicability.


2019 ◽  
Author(s):  
S Tumpa ◽  
R Thornton ◽  
M Tisdall ◽  
T Baldeweg ◽  
KJ Friston ◽  
...  

AbstractThe presence of interictal epileptiform discharges on electroencephalography (EEG) may indicate increased epileptic seizure risk and on invasive EEG are the signature of the irritative zone. In highly epileptogenic lesions – such as cortical tubers in tuberous sclerosis – these discharges can be recorded with intracranial stereotactic EEG as part of the evaluation for epilepsy surgery. Yet the network mechanisms that underwrite the generation and spread of these discharges remain poorly understood, limiting their current diagnostic use.Here, we investigate the dynamics of interictal epileptiform discharges using a combination of quantitative analysis of invasive EEG recordings and mesoscale neural mass modelling of cortical dynamics. We first characterise spatially organised local dynamics of discharges recorded from 36 separate tubers in 8 patients with tuberous sclerosis. We characterise these dynamics with a set of competing explanatory network models using dynamic causal modelling. Bayesian model comparison of plausible network architectures suggests that the recurrent coupling between neuronal populations within – and adjacent to – the tuber core explains the travelling wave dynamics observed in these patient recordings.Our results – based on interictal activity – unify competing theories about the pathological organisation of epileptic foci and surrounding cortex in patients with tuberous sclerosis. Coupled oscillator dynamics have previously been used to describe ictal activity, where fast travelling ictal discharges are commonly observed within the recruited seizure network. The interictal data analysed here add the insight that this functional architecture is already established in the interictal state. This links observations of interictal EEG abnormalities directly to pathological network coupling in epilepsy, with possible implications for epilepsy surgery approaches in tuberous sclerosis.Significance StatementInterictal epileptiform discharges (IEDs) are clinically important markers of an epileptic brain. Here we link local IED spread to network coupling through a combination of clinical recordings in paediatric patients with tuberous sclerosis complex, quantitative EEG analysis of interictal discharges spread, and Bayesian inference on coupled neural mass model parameters. We show that the kinds of interictal discharges seen in our patients require recurrent local network coupling extending beyond the putative seizure focus and that in fact only those recurrent coupled networks can support seizure-like and interictal dynamics when run in simulation. Our findings provide a novel integrated perspective on emergent epileptic dynamics in human patients.


Sign in / Sign up

Export Citation Format

Share Document