scholarly journals P.172 Diffusion MRI characteristics change in select cerebral white matter tracts after decompressive surgery for degenerative cervical myelopathy

Author(s):  
AC Friesen ◽  
SA Detombe ◽  
P Doyle-Pettypiece ◽  
H Haddad ◽  
W Ng ◽  
...  

Background: Degenerative cervical myelopathy is characterized by progressive compression of the spinal cord resulting in debilitating loss of dexterity, independent ambulation, and sphincter control. Diffusion tensor imaging (DTI) has shown that, compared to healthy controls, myelopathy patients have decreased integrity of the corticospinal tracts and corpus callosum (Bernabeu-Sanz et al, 2020). Methods: Twenty-six myelopathy patients consented to cerebral diffusion tensor imaging (3 Tesla, 32 directions, b=1000) preoperatively, as well as 6-weeks, 12-weeks, and 6-months postoperatively. Average mean diffusivity (MD), fractional anisotropy (FA), radial diffusivity (RD), and axial diffusivity (AD) were measured in the corticospinal tracts, forceps major, and forceps minor. Results: Both MD and RD decreased from 6-12 weeks postoperatively in the right corticospinal tract. The forceps major of the corpus callosum showed an initial postoperative increase in MD followed by a subsequent increase in FA and decrease in RD 3-6 months postoperatively. The AD of the forceps major increased both immediately and 3-6 months postoperatively. Conclusions: Changes in microstructural integrity of the corticospinal tract and forceps major over the postoperative recovery period suggest a pattern of recovery in myelopathy patients. This study is the first to report postoperative DTI changes in myelopathy-relevant white matter tracts in the brain.

2017 ◽  
Author(s):  
András Jakab ◽  
Ruth O`Gorman Tuura ◽  
Christian Kellenberger ◽  
Ianina Scheer

AbstractOur purpose was to evaluate the within-subject reproducibility of in utero diffusion tensor imaging (DTI) metrics and the visibility of major white matter structures.Images for 30 fetuses (20-33. postmenstrual weeks, normal neurodevelopment: 6 cases, cerebral pathology: 24 cases) were acquired on 1.5T or 3.0T MRI. DTI with 15 diffusion-weighting directions was repeated three times for each case, TR/TE: 2200/63 ms, voxel size: 1*1 mm, slice thickness: 3-5 mm, b-factor: 700 s/mm2. Reproducibility was evaluated from structure detectability, variability of DTI measures using the coefficient of variation (CV), image correlation and structural similarity across repeated scans for six selected structures. The effect of age, scanner type, presence of pathology was determined using Wilcoxon rank sum test.White matter structures were detectable in the following percentage of fetuses in at least two of the three repeated scans: corpus callosum genu 76%, splenium 64%, internal capsule, posterior limb 60%, brainstem fibers 40% and temporooccipital association pathways 60%. The mean CV of DTI metrics ranged between 3% and 14.6% and we measured higher reproducibility in fetuses with normal brain development. Head motion was negatively correlated with reproducibility, this effect was partially ameliorated by motion-correction algorithm using image registration. Structures on 3.0 T had higher variability both with- and without motion correction.Fetal DTI is reproducible for projection and commissural bundles during mid-gestation, however, in 16-30% of the cases, data were corrupted by artifacts, resulting in impaired detection of white matter structures. To achieve robust results for the quantitative analysis of diffusivity and anisotropy values, fetal-specific image processing is recommended and repeated DTI is needed to ensure the detectability of fiber pathways.AbbreviationsADaxial diffusivity;CCAcorpus callosum agenesis;CVcoefficient of variation,DTIdiffusion tensor imaging;FAfractional anisotropy;GWgestational week;MDmean diffusivity;RDradial diffusivity;ROIregion of interest;SSIMstructural similarity index


NeuroImage ◽  
2009 ◽  
Vol 46 (3) ◽  
pp. 600-607 ◽  
Author(s):  
Adrian Imfeld ◽  
Mathias S. Oechslin ◽  
Martin Meyer ◽  
Thomas Loenneker ◽  
Lutz Jancke

2014 ◽  
Vol 140 ◽  
pp. e124
Author(s):  
Joanne C. Lin ◽  
R.K. Jan ◽  
T.A. Wouldes ◽  
R.R. Kydd ◽  
B.R. Russell

Sign in / Sign up

Export Citation Format

Share Document