scholarly journals PARAMETERS ON SUPPORT STRUCTURE DESIGN FOR METAL ADDITIVE MANUFACTURING

2020 ◽  
Vol 1 ◽  
pp. 1145-1154
Author(s):  
S. Weber ◽  
J. Montero ◽  
M. Bleckmann ◽  
K. Paetzold

AbstractThe topic of support structure design in the Design for Additive Manufacturing (DfAM) field is not addressed with the same relevance as the topic of part design. Therefore, this contribution investigates parameters for both the manufacturing and support structure design for the Laser Powder Bed Fusion (L-PBF) process. Matrices for cause-effect-relations of manufacturing and design parameters on build properties as well as correlations of them are presented. Based on these, recommendations for actions for experimental procedures are derived following the Design of Experiments method.

2021 ◽  
Vol 1 ◽  
pp. 1657-1666
Author(s):  
Joaquin Montero ◽  
Sebastian Weber ◽  
Christoph Petroll ◽  
Stefan Brenner ◽  
Matthias Bleckmann ◽  
...  

AbstractCommercially available metal Laser Powder Bed Fusion (L-PBF) systems are steadily evolving. Thus, design limitations narrow and the diversity of achievable geometries widens. This progress leads researchers to create innovative benchmarks to understand the new system capabilities. Thereby, designers can update their knowledge base in design for additive manufacturing (DfAM). To date, there are plenty of geometrical benchmarks that seek to develop generic test artefacts. Still, they are often complex to measure, and the information they deliver may not be relevant to some designers. This article proposes a geometrical benchmarking approach for metal L-PBF systems based on the designer needs. Furthermore, Geometric Dimensioning and Tolerancing (GD&T) characteristics enhance the approach. A practical use-case is presented, consisting of developing, manufacturing, and measuring a meaningful and straightforward geometric test artefact. Moreover, optical measuring systems are used to create a tailored uncertainty map for benchmarking two different L-PBF systems.


Metals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 341 ◽  
Author(s):  
Eleonora Santecchia ◽  
Stefano Spigarelli ◽  
Marcello Cabibbo

Metal additive manufacturing is changing the way in which engineers and designers model the production of three-dimensional (3D) objects, with rapid growth seen in recent years. Laser powder bed fusion (LPBF) is the most used metal additive manufacturing technique, and it is based on the efficient interaction between a high-energy laser and a metal powder feedstock. To make LPBF more cost-efficient and environmentally friendly, it is of paramount importance to recycle (reuse) the unfused powder from a build job. However, since the laser–powder interaction involves complex physics phenomena and generates by-products which might affect the integrity of the feedstock and the final build part, a better understanding of the overall process should be attained. The present review paper is focused on the clarification of the interaction between laser and metal powder, with a strong focus on its side effects.


2020 ◽  
Vol 1 ◽  
pp. 1007-1016
Author(s):  
J. Montero ◽  
S. Weber ◽  
M. Bleckmann ◽  
K. Paetzold

AbstractAdditive Manufacturing is doing its first steps in the production of spare parts. Usually the spares belong to legacy systems, and the tooling to produce them is no longer available. Re-designing spares that are designed for a previous industry mindset can be sometimes challenging. In this study a rather classic design approach is compared to a functional driven approach. Four case studies from different clients are reported, remarking the benefits and drawbacks of using design for additive manufacturing practices in Laser Powder Bed Fusion.


Sign in / Sign up

Export Citation Format

Share Document