scholarly journals Resonant motions in the presence of degeneracies for quasi-periodically perturbed systems

2014 ◽  
Vol 35 (4) ◽  
pp. 1079-1140 ◽  
Author(s):  
LIVIA CORSI ◽  
GUIDO GENTILE

AbstractWe consider one-dimensional systems in the presence of a quasi-periodic perturbation, in the analytical setting, and study the problem of existence of quasi-periodic solutions which are resonant with the frequency vector of the perturbation. We assume that the unperturbed system is locally integrable and anisochronous, and that the frequency vector of the perturbation satisfies the Bryuno condition. Existence of resonant solutions is related to the zeros of a suitable function, called the Melnikov function—by analogy with the periodic case. We show that, if the Melnikov function has a zero of odd order and under some further condition on the sign of the perturbation parameter, then there exists at least one resonant solution which continues an unperturbed solution. If the Melnikov function is identically zero then one can push perturbation theory up to the order where a counterpart of Melnikov function appears and does not vanish identically: if such a function has a zero of odd order and a suitable positiveness condition is met, again the same persistence result is obtained. If the system is Hamiltonian, then the procedure can be indefinitely iterated and no positiveness condition must be required: as a byproduct, the result follows that at least one resonant quasi-periodic solution always exists with no assumption on the perturbation. Such a solution can be interpreted as a (parabolic) lower-dimensional torus.

2016 ◽  
Vol 26 (01) ◽  
pp. 1650014
Author(s):  
Shuangbao Li ◽  
Wensai Ma ◽  
Wei Zhang ◽  
Yuxin Hao

In this paper, we extend the well-known Melnikov method for smooth systems to a class of planar hybrid piecewise-smooth systems, defined in three domains separated by two switching manifolds [Formula: see text] and [Formula: see text]. The dynamics in each domain is governed by a smooth system. When an orbit reaches the separation lines, then a reset map describing an impacting rule applies instantaneously before the orbit enters into another domain. We assume that the unperturbed system has a continuum of periodic orbits transversally crossing the separation lines. Then, we wish to study the persistence of the periodic orbits under an autonomous perturbation and the reset map. To achieve this objective, we first choose four appropriate switching sections and build a Poincaré map, after that, we present a displacement function and carry on the Taylor expansion of the displacement function to the first-order in the perturbation parameter [Formula: see text] near [Formula: see text]. We denote the first coefficient in the expansion as the first-order Melnikov function whose zeros provide us the persistence of periodic orbits under perturbation. Finally, we study periodic orbits of a concrete planar hybrid piecewise-smooth system by the obtained Melnikov function.


2021 ◽  
Vol 31 (09) ◽  
pp. 2150123
Author(s):  
Xiaoyan Chen ◽  
Maoan Han

In this paper, we study Poincaré bifurcation of a class of piecewise polynomial systems, whose unperturbed system has a period annulus together with two invariant lines. The main concerns are the number of zeros of the first order Melnikov function and the estimation of the number of limit cycles which bifurcate from the period annulus under piecewise polynomial perturbations of degree [Formula: see text].


2006 ◽  
Vol 16 (08) ◽  
pp. 2177-2190
Author(s):  
MAURO DI MARCO ◽  
CHIARA GHILARDI

This paper investigates the issue of robustness of complete stability of standard Cellular Neural Networks (CNNs) with respect to small perturbations of the nominally symmetric interconnections. More specifically, a class of circular one-dimensional (1-D) CNNs with nearest-neighbor interconnections only, is considered. The class has sparse interconnections and is subject to perturbations which preserve the interconnecting structure. Conditions assuring that the perturbed CNN has a unique equilibrium point at the origin, which is unstable, are provided in terms of relative magnitude of the perturbations with respect to the nominal interconnection weights. These conditions allow one to characterize regions in the perturbation parameter space where there is loss of stability for the perturbed CNN. In turn, this shows that even for sparse interconnections and structure preserving perturbations, robustness of complete stability is not guaranteed in the general case.


2018 ◽  
Vol 28 (02) ◽  
pp. 1850026
Author(s):  
Yuanyuan Liu ◽  
Feng Li ◽  
Pei Dang

We consider the bifurcation in a class of piecewise polynomial systems with piecewise polynomial perturbations. The corresponding unperturbed system is supposed to possess an elementary or nilpotent critical point. First, we present 17 cases of possible phase portraits and conditions with at least one nonsmooth periodic orbit for the unperturbed system. Then we focus on the two specific cases with two heteroclinic orbits and investigate the number of limit cycles near the loop by means of the first-order Melnikov function, respectively. Finally, we take a quartic piecewise system with quintic piecewise polynomial perturbation as an example and obtain that there can exist ten limit cycles near the heteroclinic loop.


2019 ◽  
Vol 21 (07) ◽  
pp. 1850064 ◽  
Author(s):  
Guido Gentile ◽  
Alessandro Mazzoccoli ◽  
Faenia Vaia

We consider a class of singular ordinary differential equations describing analytic systems of arbitrary finite dimension, subject to a quasi-periodic forcing term and in the presence of dissipation. We study the existence of response solutions, i.e. quasi-periodic solutions with the same frequency vector as the forcing term, in the case of large dissipation. We assume the system to be conservative in the absence of dissipation, so that the forcing term is — up to the sign — the gradient of a potential energy, and both the mass and damping matrices to be symmetric and positive definite. Further, we assume a non-degeneracy condition on the forcing term, essentially that the time-average of the potential energy has a strict local minimum. On the contrary, no condition is assumed on the forcing frequency; in particular, we do not require any Diophantine condition. We prove that, under the assumptions above, a response solution always exists provided the dissipation is strong enough. This extends results previously available in the literature in the one-dimensional case.


2016 ◽  
Vol 26 (02) ◽  
pp. 1650030 ◽  
Author(s):  
Shuangbao Li ◽  
Wensai Ma ◽  
Wei Zhang ◽  
Yuxin Hao

In this paper, we extend the well-known Melnikov method for smooth systems to a class of periodic perturbed planar hybrid piecewise-smooth systems. In this class, the switching manifold is a straight line which divides the plane into two zones, and the dynamics in each zone is governed by a smooth system. When a trajectory reaches the separation line, then a reset map is applied instantaneously before entering the trajectory in the other zone. We assume that the unperturbed system is a piecewise Hamiltonian system which possesses a piecewise-smooth homoclinic solution transversally crossing the switching manifold. Then, we study the persistence of the homoclinic orbit under a nonautonomous periodic perturbation and the reset map. To achieve this objective, we obtain the Melnikov function to measure the distance of the perturbed stable and unstable manifolds and present the theorem for homoclinic bifurcations for the class of planar hybrid piecewise-smooth systems. Furthermore, we employ the obtained Melnikov function to detect the chaotic boundaries for a concrete planar hybrid piecewise-smooth system.


2017 ◽  
Vol 38 (5) ◽  
pp. 1697-1708 ◽  
Author(s):  
V. L. CHERNYSHEV ◽  
A. A. TOLCHENNIKOV

We study a topological space obtained from a graph via replacing vertices with smooth Riemannian manifolds, that is, a decorated graph. We consider the following dynamical system on decorated graphs. Suppose that, at the initial time, we have a narrow wave packet on a one-dimensional edge. It can be thought of as a point moving along the edge. When a packet arrives at the point of gluing, the expanding wavefront begins to spread on the Riemannian manifold. At the same time, there is a partial reflection of the wave packet. When the wavefront that propagates on the surface comes to another point of gluing, it generates a reflected wavefront and a wave packet on an edge. We study the number of Gaussian packets, that is, moving points on one-dimensional edges as time goes to infinity. We prove the asymptotic estimations for this number for the following decorated graphs: a cylinder with an interval, a two-dimensional torus with an interval and a three-dimensional torus with an interval. Also we prove a general theorem about a manifold with an interval and apply it to the case of a uniformly secure manifold.


2011 ◽  
Vol 22 (04) ◽  
pp. 419-439 ◽  
Author(s):  
GENARO J. MARTÍNEZ ◽  
ANDREW ADAMATZKY ◽  
CHRISTOPHER R. STEPHENS ◽  
ALEJANDRO F. HOEFLICH

Gliders in one-dimensional cellular automata are compact groups of non-quiescent and non-ether patterns (ether represents a periodic background) translating along automaton lattice. They are cellular automaton analogous of localizations or quasi-local collective excitations traveling in a spatially extended nonlinear medium. They can be considered as binary strings or symbols traveling along a one-dimensional ring, interacting with each other and changing their states, or symbolic values, as a result of interactions. We analyze what types of interaction occur between gliders traveling on a cellular automaton "cyclotron" and build a catalog of the most common reactions. We demonstrate that collisions between gliders emulate the basic types of interaction that occur between localizations in nonlinear media: fusion, elastic collision, and soliton-like collision. Computational outcomes of a swarm of gliders circling on a one-dimensional torus are analyzed via implementation of cyclic tag systems.


Sign in / Sign up

Export Citation Format

Share Document