scholarly journals Incomparable actions of free groups

2016 ◽  
Vol 37 (7) ◽  
pp. 2084-2098
Author(s):  
CLINTON T. CONLEY ◽  
BENJAMIN D. MILLER

Suppose that $X$ is a Polish space, $E$ is a countable Borel equivalence relation on $X$, and $\unicode[STIX]{x1D707}$ is an $E$-invariant Borel probability measure on $X$. We consider the circumstances under which for every countable non-abelian free group $\unicode[STIX]{x1D6E4}$, there is a Borel sequence $(\cdot _{r})_{r\in \mathbb{R}}$ of free actions of $\unicode[STIX]{x1D6E4}$ on $X$, generating subequivalence relations $E_{r}$ of $E$ with respect to which $\unicode[STIX]{x1D707}$ is ergodic, with the further property that $(E_{r})_{r\in \mathbb{R}}$ is an increasing sequence of relations which are pairwise incomparable under $\unicode[STIX]{x1D707}$-reducibility. In particular, we show that if $E$ satisfies a natural separability condition, then this is the case as long as there exists a free Borel action of a countable non-abelian free group on $X$, generating a subequivalence relation of $E$ with respect to which $\unicode[STIX]{x1D707}$ is ergodic.

2008 ◽  
Vol 28 (5) ◽  
pp. 1615-1633 ◽  
Author(s):  
BENJAMIN MILLER

AbstractGiven a Polish space X, a countable Borel equivalence relation E on X, and a Borel cocycle $\rho : E \rightarrow (0, \infty )$, we characterize the circumstances under which there is a probability measure μ on X such that ρ(ϕ−1(x),x)=[d(ϕ*μ)/dμ](x) μ-almost everywhere, for every Borel injection ϕ whose graph is contained in E.


1993 ◽  
Vol 58 (3) ◽  
pp. 894-907 ◽  
Author(s):  
Alexander S. Kechris

LetXbe a standard Borel space (i.e., a Polish space with the associated Borel structure), and letEbe acountableBorel equivalence relation onX, i.e., a Borel equivalence relationEfor which every equivalence class [x]Eis countable. By a result of Feldman-Moore [FM],Eis induced by the orbits of a Borel action of a countable groupGonX.The structure of general countable Borel equivalence relations is very little understood. However, a lot is known for the particularly important subclass consisting of hyperfinite relations. A countable Borel equivalence relation is calledhyperfiniteif it is induced by a Borel ℤ-action, i.e., by the orbits of a single Borel automorphism. Such relations are studied and classified in [DJK] (see also the references contained therein). It is shown in Ornstein-Weiss [OW] and Connes-Feldman-Weiss [CFW] that for every Borel equivalence relationEinduced by a Borel action of a countable amenable groupGonXand for every (Borel) probability measure μ onX, there is a Borel invariant setY⊆Xwith μ(Y) = 1 such thatE↾Y(= the restriction ofEtoY) is hyperfinite. (Recall that a countable group G isamenableif it carries a finitely additive translation invariant probability measure defined on all its subsets.) Motivated by this result, Weiss [W2] raised the question of whether everyEinduced by a Borel action of a countable amenable group is hyperfinite. Later on Weiss (personal communication) showed that this is true forG= ℤn. However, the problem is still open even for abelianG. Our main purpose here is to provide a weaker affirmative answer for general amenableG(and more—see below). We need a definition first. Given two standard Borel spacesX, Y, auniversally measurableisomorphism betweenXandYis a bijection ƒ:X→Ysuch that both ƒ, ƒ-1are universally measurable. (As usual, a mapg:Z→W, withZandWstandard Borel spaces, is calleduniversally measurableif it is μ-measurable for every probability measure μ onZ.) Notice now that to assert that a countable Borel equivalence relation onXis hyperfinite is trivially equivalent to saying that there is a standard Borel spaceYand a hyperfinite Borel equivalence relationFonY, which isBorelisomorphic toE, i.e., there is a Borel bijection ƒ:X→YwithxEy⇔ ƒ(x)Fƒ(y). We have the following theorem.


2006 ◽  
Vol 71 (1) ◽  
pp. 265-282 ◽  
Author(s):  
Asge Törnquist

AbstractIn this paper we show that there are “E0 many” orbit inequivalent free actions of the free groups , 2 ≤ n ≤ ∞ by measure preserving transformations on a standard Borel probability space. In particular, there are uncountably many such actions.


2018 ◽  
Vol 40 (4) ◽  
pp. 953-974 ◽  
Author(s):  
WEN HUANG ◽  
LEIYE XU ◽  
XIANGDONG YE

In this paper the notion of sub-exponential measure complexity for an invariant Borel probability measure of a topological dynamical system is introduced. Then a minimal distal skew product map on the torus with sub-exponential measure complexity is constructed.


2009 ◽  
Vol 30 (1) ◽  
pp. 151-157 ◽  
Author(s):  
MANFRED EINSIEDLER ◽  
ALEXANDER FISH

AbstractWe prove that if a Borel probability measure on the circle group is invariant under the action of a ‘large’ multiplicative semigroup (lower logarithmic density is positive) and the action of the whole semigroup is ergodic then the measure is either Lebesgue or has finite support.


Analysis ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Bilel Selmi

Abstract This paper studies the behavior of the lower and upper multifractal Hewitt–Stromberg functions under slices onto ( n - m ) {(n-m)} -dimensional subspaces. More precisely, we discuss the relationship between the multifractal Hewitt–Stromberg functions of a compactly supported Borel probability measure and those of slices or sections of the measure. In addition, we prove that if μ has a finite m-energy and q lies in a certain somewhat restricted interval, then these functions satisfy the expected adding of co-dimensions formula.


2019 ◽  
Vol 52 (1) ◽  
pp. 256-273
Author(s):  
Steven N. Harding ◽  
Alexander W. N. Riasanovsky

AbstractBased on the seminal work of Hutchinson, we investigate properties of α-weighted Cantor measures whose support is a fractal contained in the unit interval. Here, α is a vector of nonnegative weights summing to 1, and the corresponding weighted Cantor measure μα is the unique Borel probability measure on [0, 1] satisfying {\mu ^\alpha }(E) = \sum\nolimits_{n = 0}^{N - 1} {{\alpha _n}{\mu ^\alpha }(\varphi _n^{ - 1}(E))} where ϕn : x ↦ (x + n)/N. In Sections 1 and 2 we examine several general properties of the measure μα and the associated Legendre polynomials in L_{{\mu ^\alpha }}^2 [0, 1]. In Section 3, we (1) compute the Laplacian and moment generating function of μα, (2) characterize precisely when the moments Im = ∫[0,1]xm dμα exhibit either polynomial or exponential decay, and (3) describe an algorithm which estimates the first m moments within uniform error ε in O((log log(1/ε)) · m log m). We also state analogous results in the natural case where α is palindromic for the measure να attained by shifting μα to [−1/2, 1/2].


2019 ◽  
Vol 20 (04) ◽  
pp. 2050024
Author(s):  
Zhihui Yuan

Any Borel probability measure supported on a Cantor set included in [Formula: see text] and of zero Lebesgue measure on the real line possesses a discrete inverse measure. We study the validity of the multifractal formalism for the inverse measures of random weak Gibbs measures. The study requires, in particular, to develop in this context of random dynamics a suitable version of the results known for heterogeneous ubiquity associated with deterministic Gibbs measures.


1982 ◽  
Vol 2 (1) ◽  
pp. 109-124 ◽  
Author(s):  
Lai-Sang Young

AbstractWe consider diffeomorphisms of surfaces leaving invariant an ergodic Borel probability measure μ. Define HD (μ) to be the infimum of Hausdorff dimension of sets having full μ-measure. We prove a formula relating HD (μ) to the entropy and Lyapunov exponents of the map. Other classical notions of fractional dimension such as capacity and Rényi dimension are discussed. They are shown to be equal to Hausdorff dimension in the present context.


2014 ◽  
Vol 66 (2) ◽  
pp. 303-322 ◽  
Author(s):  
Márton Elekes ◽  
Juris Steprāns

AbstractA subset X of a Polish group G is called Haar null if there exist a Borel set B ⊃ X and Borel probability measure μ on G such that μ(gBh) = 0 for every g; h ∊ G. We prove that there exist a set X ⊂ R that is not Lebesgue null and a Borel probability measure μ such that μ (X + t) = 0 for every t ∊ R. This answers a question from David Fremlin’s problem list by showing that one cannot simplify the definition of a Haar null set by leaving out the Borel set B. (The answer was already known assuming the Continuum Hypothesis.)This result motivates the following Baire category analogue. It is consistent with ZFC that there exist an abelian Polish group G and a Cantor set C ⊂ G such that for every non-meagre set X ⊂ G there exists a t ∊ G such that C ∩ (X + t) is relatively non-meagre in C. This essentially generalizes results of Bartoszyński and Burke–Miller.


Sign in / Sign up

Export Citation Format

Share Document