-stability of expanding maps in non-Archimedean dynamics

2017 ◽  
Vol 39 (4) ◽  
pp. 1002-1019
Author(s):  
JUNGHUN LEE

The aim of this paper is to show $J$-stability of expanding rational maps over an algebraically closed, complete and non-Archimedean field of characteristic zero. More precisely, we will show that for any expanding rational map, there exists a neighborhood of it such that the dynamics on the Julia set of any rational map in the neighborhood is the same as the dynamics of the expanding rational map as a non-Archimedean analogue of a corollary of Mañé, Sad and Sullivan’s result [On the dynamics of rational maps. Ann. Sci. Éc. Norm. Supér. (4)16 (1983), 193–217] in complex dynamics.

2002 ◽  
Vol 85 (2) ◽  
pp. 467-492 ◽  
Author(s):  
TIM BEDFORD ◽  
ALBERT M. FISHER ◽  
MARIUSZ URBAŃSKI

We define the scenery flow space at a point z in the Julia set J of a hyperbolic rational map $T : \mathbb{C} \to \mathbb{C}$ with degree at least 2, and more generally for T a conformal mixing repellor.We prove that, for hyperbolic rational maps, except for a few exceptional cases listed below, the scenery flow is ergodic. We also prove ergodicity for almost all conformal mixing repellors; here the statement is that the scenery flow is ergodic for the repellors which are not linear nor contained in a finite union of real-analytic curves, and furthermore that for the collection of such maps based on a fixed open set U, the ergodic cases form a dense open subset of that collection. Scenery flow ergodicity implies that one generates the same scenery flow by zooming down towards almost every z with respect to the Hausdorff measure $H^d$, where d is the dimension of J, and that the flow has a unique measure of maximal entropy.For all conformal mixing repellors, the flow is loosely Bernoulli and has topological entropy at most d. Moreover the flow at almost every point is the same up to a rotation, and so as a corollary, one has an analogue of the Lebesgue density theorem for the fractal set, giving a different proof of a theorem of Falconer.2000 Mathematical Subject Classification: 37F15, 37F35, 37D20.


2011 ◽  
Vol 32 (5) ◽  
pp. 1711-1726 ◽  
Author(s):  
WENJUAN PENG ◽  
YONGCHENG YIN ◽  
YU ZHAI

AbstractIn this paper, taking advantage of quasi-conformal surgery, we prove that each non-hyperbolic rational map with a Cantor Julia set can be approximated by hyperbolic rational maps with Cantor Julia sets of the same degree.


1992 ◽  
Vol 12 (1) ◽  
pp. 39-52 ◽  
Author(s):  
L. Baribeau ◽  
T. J. Ransford

AbstractLet {RA} be an analytic family of rational maps and denote by j(λ) the Julia set of Rλ. We prove that the upper semicontinuous regularization j(λ) of j(λ) (which coincides with j(λ) for all λ in a dense open set) is a meromorphic multifunction, and give applications that illustrate the instability of Julia sets. In a similar vein, we also consider forward orbits of critical points and limit sets of Kleinian groups.


1996 ◽  
Vol 16 (4) ◽  
pp. 833-848 ◽  
Author(s):  
Sebastian Van Strien

AbstractIn this paper we shall give examples of rational maps on the Riemann sphere and also of polynomial interval maps which are transitive but not ergodic with respect to Lebesgue measure. In fact, these maps have two disjoint compact attractors whose attractive basins are ‘intermingled’, each having a positive Lebesgue measure in every open set. In addition, we show that there exists a real bimodal polynomial with Fibonacci dynamics (of the type considered by Branner and Hubbard), whose Julia set is totally disconnected and has positive Lebesgue measure. Finally, we show that there exists a rational map associated to the Newton iteration scheme corresponding to a polynomial whose Julia set has positive Lebesgue measure.


1997 ◽  
Vol 17 (2) ◽  
pp. 253-267 ◽  
Author(s):  
A. G. ABERCROMBIE ◽  
R. NAIR

A rational map $T$ of degree not less than two is known to preserve a measure, called the conformal measure, equivalent to the Hausdorff measure of the same dimension as its Julia set $J$ and supported there, with respect to which it is ergodic and even exact. As a consequence of Birkhoff's pointwise ergodic theorem almost every $z$ in $J$ with respect to the conformal measure has an orbit that is asymptotically distributed on $J$ with respect to this measure. As a counterpoint to this, the following result is established in this paper. Let $\Omega(z)=\Omega_{T}(z)$ denote the closure of the set $\{T^{n}(z):n=1,2,\ldots\}$. For any expanding rational map $T$ of degree at least two we set \[ S(z_{0})=\{z\in J:z_{0}\not\in \Omega_{T}(z)\}. \] We show that for all $z_{0}$ the Hausdorff dimensions of $S(z)$ and $J$ are equal.


1992 ◽  
Vol 12 (1) ◽  
pp. 53-66 ◽  
Author(s):  
M. Denker ◽  
M. Urbański

AbstractLet h denote the Hausdorff dimension of the Julia set J(T) of a parabolic rational map T. In this paper we prove that (after normalisation) the h-conformal measure on J(T) equals the h-dimensional Hausdorff measure Hh on J(T), if h ≥ 1, and equals the h-dimensional packing measure Πh on J(T), if h ≤ 1. Moreover, if h < 1, then Hh = 0 and, if h > 1, then Πh(J(T)) = ∞.


2007 ◽  
Vol 59 (2) ◽  
pp. 311-331 ◽  
Author(s):  
Hans Christianson

AbstractThis paper describes new results on the growth and zeros of the Ruelle zeta function for the Julia set of a hyperbolic rational map. It is shown that the zeta function is bounded by exp(CK|s|δ) in strips | Re s| ≤ K, where δ is the dimension of the Julia set. This leads to bounds on the number of zeros in strips (interpreted as the Pollicott–Ruelle resonances of this dynamical system). An upper bound on the number of zeros in polynomial regions {| Re s| ≤ | Im s|α} is given, followed by weaker lower bound estimates in strips {Re s > –C, | Ims| ≤ r}, and logarithmic neighbourhoods {| Re s| ≤ ρlog | Ims|}. Recent numerical work of Strain–Zworski suggests the upper bounds in strips are optimal.


2016 ◽  
Vol 38 (2) ◽  
pp. 583-600 ◽  
Author(s):  
YAN GAO ◽  
PETER HAÏSSINSKY ◽  
DANIEL MEYER ◽  
JINSONG ZENG

In this paper, we prove that if $R:\widehat{\mathbb{C}}\rightarrow \widehat{\mathbb{C}}$ is a postcritically finite rational map with Julia set homeomorphic to the Sierpiński carpet, then there is an integer $n_{0}$, such that, for any $n\geq n_{0}$, there exists an $R^{n}$-invariant Jordan curve $\unicode[STIX]{x1D6E4}$ containing the postcritical set of $R$.


2013 ◽  
Vol 35 (2) ◽  
pp. 499-529 ◽  
Author(s):  
WEIYUAN QIU ◽  
FEI YANG ◽  
YONGCHENG YIN

AbstractIn this paper, we give a family of rational maps whose Julia sets are Cantor circles and show that every rational map whose Julia set is a Cantor set of circles must be topologically conjugate to one map in this family on their corresponding Julia sets. In particular, we give the specific expressions of some rational maps whose Julia sets are Cantor circles, but they are not topologically conjugate to any McMullen maps on their Julia sets. Moreover, some non-hyperbolic rational maps whose Julia sets are Cantor circles are also constructed.


Author(s):  
Alexandre Dezotti ◽  
Pascale Roesch

This chapter deals with the question of local connectivity of the Julia set of polynomials and rational maps. It discusses when the Julia set of a rational map is considered connected but not locally connected. The question of the local connectivity of the Julia set has been studied extensively for quadratic polynomials, but there is still no complete characterization of when a quadratic polynomial has a connected and locally connected Julia set. This chapter thus proposes some conjectures and develops a model of non-locally connected Julia sets in the case of infinitely renormalizable quadratic polynomials. This model presents the structure of what the post-critical set in that setting should be.


Sign in / Sign up

Export Citation Format

Share Document