SECOND MOMENTS IN THE GENERALIZED GAUSS CIRCLE PROBLEM
The generalized Gauss circle problem concerns the lattice point discrepancy of large spheres. We study the Dirichlet series associated to$P_{k}(n)^{2}$, where$P_{k}(n)$is the discrepancy between the volume of the$k$-dimensional sphere of radius$\sqrt{n}$and the number of integer lattice points contained in that sphere. We prove asymptotics with improved power-saving error terms for smoothed sums, including$\sum P_{k}(n)^{2}e^{-n/X}$and the Laplace transform$\int _{0}^{\infty }P_{k}(t)^{2}e^{-t/X}\,dt$, in dimensions$k\geqslant 3$. We also obtain main terms and power-saving error terms for the sharp sums$\sum _{n\leqslant X}P_{k}(n)^{2}$, along with similar results for the sharp integral$\int _{0}^{X}P_{3}(t)^{2}\,dt$. This includes producing the first power-saving error term in mean square for the dimension-3 Gauss circle problem.