scholarly journals SECOND MOMENTS IN THE GENERALIZED GAUSS CIRCLE PROBLEM

2018 ◽  
Vol 6 ◽  
Author(s):  
THOMAS A. HULSE ◽  
CHAN IEONG KUAN ◽  
DAVID LOWRY-DUDA ◽  
ALEXANDER WALKER

The generalized Gauss circle problem concerns the lattice point discrepancy of large spheres. We study the Dirichlet series associated to$P_{k}(n)^{2}$, where$P_{k}(n)$is the discrepancy between the volume of the$k$-dimensional sphere of radius$\sqrt{n}$and the number of integer lattice points contained in that sphere. We prove asymptotics with improved power-saving error terms for smoothed sums, including$\sum P_{k}(n)^{2}e^{-n/X}$and the Laplace transform$\int _{0}^{\infty }P_{k}(t)^{2}e^{-t/X}\,dt$, in dimensions$k\geqslant 3$. We also obtain main terms and power-saving error terms for the sharp sums$\sum _{n\leqslant X}P_{k}(n)^{2}$, along with similar results for the sharp integral$\int _{0}^{X}P_{3}(t)^{2}\,dt$. This includes producing the first power-saving error term in mean square for the dimension-3 Gauss circle problem.


2006 ◽  
Vol 80 (94) ◽  
pp. 141-156 ◽  
Author(s):  
Aleksandar Ivic

We study the convolution function C[f(x)]:=\int_1^x f(y)f\Bigl(\frac xy\Bigr)\frac{dy}y When f(x) is a suitable number-theoretic error term. Asymptotics and upper bounds for C[f(x)] are derived from mean square bounds for f(x). Some applications are given, in particular to |\zeta(\tfrac12+ix)|^{2k} and the classical Rankin--Selberg problem from analytic number theory.



2021 ◽  
Vol 15 (1) ◽  
pp. 1-27
Author(s):  
Thomas A. Hulse ◽  
Chan Ieong Kuan ◽  
David Lowry-Duda ◽  
Alexander Walker


2014 ◽  
Vol 2 ◽  
Author(s):  
ARUL SHANKAR ◽  
JACOB TSIMERMAN

AbstractWe show how the Selberg $\Lambda ^2$-sieve can be used to obtain power saving error terms in a wide class of counting problems which are tackled using the geometry of numbers. Specifically, we give such an error term for the counting function of $S_5$-quintic fields.



Author(s):  
Pedro R. S. Antunes ◽  
Pedro Freitas

We consider the problem of minimizing the k th eigenvalue of rectangles with unit area and Dirichlet boundary conditions. This problem corresponds to finding the ellipse centred at the origin with axes on the horizontal and vertical axes with the smallest area containing k integer lattice points in the first quadrant. We show that, as k goes to infinity, the optimal rectangle approaches the square and, correspondingly, the optimal ellipse approaches the circle. We also provide a computational method for determining optimal rectangles for any k and relate the rate of convergence to the square with the conjectured error term for Gauss's circle problem.



2009 ◽  
Vol 146 (2) ◽  
pp. 277-287 ◽  
Author(s):  
YUK-KAM LAU ◽  
KAI-MAN TSANG

AbstractLet F(x) be the remainder term in the mean square formula of the error term Δ(t) in the Dirichlet divisor problem. We improve on the upper estimate of F(x) obtained by Preissmann around twenty years ago. The method is robust, which applies to the same problem for the error terms in the circle problem and the mean square formula of the Riemann zeta-function.



Author(s):  
OLGA BALKANOVA ◽  
DMITRY FROLENKOV ◽  
MORTEN S. RISAGER

Abstract The Zagier L-series encode data of real quadratic fields. We study the average size of these L-series, and prove asymptotic expansions and omega results for the expansion. We then show how the error term in the asymptotic expansion can be used to obtain error terms in the prime geodesic theorem.



2013 ◽  
Vol 09 (08) ◽  
pp. 2091-2128 ◽  
Author(s):  
SZILÁRD GY. RÉVÉSZ ◽  
ANNE de ROTON

We consider the classical Wiener–Ikehara Tauberian theorem, with a generalized condition of slow decrease and some additional poles on the boundary of convergence of the Laplace transform. In this generality, we prove the otherwise known asymptotic evaluation of the transformed function, when the usual conditions of the Wiener–Ikehara theorem hold. However, our version also provides an effective error term, not known thus far in this generality. The crux of the proof is a proper, asymptotic variation of the lemmas of Ganelius and Tenenbaum, also constructed for the sake of an effective version of the Wiener–Ikehara theorem.



2016 ◽  
Vol 103 (2) ◽  
pp. 231-249
Author(s):  
JUN FURUYA ◽  
MAKOTO MINAMIDE ◽  
YOSHIO TANIGAWA

We attempt to discuss a new circle problem. Let $\unicode[STIX]{x1D701}(s)$ denote the Riemann zeta-function $\sum _{n=1}^{\infty }n^{-s}$ ($\text{Re}\,s>1$) and $L(s,\unicode[STIX]{x1D712}_{4})$ the Dirichlet $L$-function $\sum _{n=1}^{\infty }\unicode[STIX]{x1D712}_{4}(n)n^{-s}$ ($\text{Re}\,s>1$) with the primitive Dirichlet character mod 4. We shall define an arithmetical function $R_{(1,1)}(n)$ by the coefficient of the Dirichlet series $\unicode[STIX]{x1D701}^{\prime }(s)L^{\prime }(s,\unicode[STIX]{x1D712}_{4})=\sum _{n=1}^{\infty }R_{(1,1)}(n)n^{-s}$$(\text{Re}\,s>1)$. This is an analogue of $r(n)/4=\sum _{d|n}\unicode[STIX]{x1D712}_{4}(d)$. In the circle problem, there are many researches of estimations and related topics on the error term in the asymptotic formula for $\sum _{n\leq x}r(n)$. As a new problem, we deduce a ‘truncated Voronoï formula’ for the error term in the asymptotic formula for $\sum _{n\leq x}R_{(1,1)}(n)$. As a direct application, we show the mean square for the error term in our new problem.







Sign in / Sign up

Export Citation Format

Share Document