scholarly journals Generation of high-quality electron beams by ionization injection in a single acceleration stage

Author(s):  
Nasr A.M. Hafz ◽  
Song Li ◽  
Guangyu Li ◽  
Mohammad Mirzaie ◽  
Ming Zeng ◽  
...  

Ionization-induced electron injection in laser wakefield accelerators, which was recently proposed to lower the laser intensity threshold for electron trapping into the wake wave, has the drawback of generating electron beams with large and continuous energy spreads, severely limiting their future applications. Complex target designs based on separating the electron trapping and acceleration stages were proposed as the only way for getting small energy-spread electron beams. Here, based on the self-truncated ionization-injection concept which requires the use of unmatched laser–plasma parameters and by using tens of TW laser pulses focused onto a gas jet of helium mixed with low concentrations of nitrogen, we demonstrate single-stage laser wakefield acceleration of multi-hundred MeV electron bunches with energy spreads of a few percent. The experimental results are verified by PIC simulations.

2019 ◽  
Vol 34 (34) ◽  
pp. 1943012 ◽  
Author(s):  
Ronghao Hu ◽  
Zheng Gong ◽  
Jinqing Yu ◽  
Yinren Shou ◽  
Meng Lv ◽  
...  

The emerging intense attosecond X-ray lasers can extend the Laser Wakefield Acceleration mechanism to higher plasma densities in which the acceleration gradients are greatly enhanced. Here we present simulation results of high quality electron acceleration driven by intense attosecond X-ray laser pulses in liquid methane. Ultrahigh brightness electron beams can be generated with 5-dimensional beam brightness over [Formula: see text]. The pulse duration of the electron bunch can be shorter than 20 as. Such unique electron sources can benefit research areas requiring crucial spatial and temporal resolutions.


2016 ◽  
Vol 113 (3) ◽  
pp. 34002 ◽  
Author(s):  
N. Nakanii ◽  
T. Hosokai ◽  
K. Iwasa ◽  
N. C. Pathak ◽  
S. Masuda ◽  
...  

Author(s):  
M.J van der Wiel ◽  
O.J Luiten ◽  
G.J.H Brussaard ◽  
S.B van der Geer ◽  
W.H Urbanus ◽  
...  

External injection of electron bunches into laser-driven plasma waves so far has not resulted in ‘controlled’ acceleration, i.e. production of bunches with well-defined energy spread. Recent simulations, however, predict that narrow distributions can be achieved, provided the conditions for properly trapping the injected electrons are met. Under these conditions, injected bunch lengths of one to several plasma wavelengths are acceptable. This paper first describes current efforts to demonstrate this experimentally, using state-of-the-art radio frequency technology. The expected charge accelerated, however, is still low for most applications. In the second part, the paper addresses a number of novel concepts for significant enhancement of photo-injector brightness. Simulations predict that, once these concepts are realized, external injection into a wakefield accelerator will lead to accelerated bunch specs comparable to those of recent ‘laser-into-gasjet’ experiments, without the present irreproducibility of charge and final energy of the latter.


2008 ◽  
Vol 36 (4) ◽  
pp. 1746-1750 ◽  
Author(s):  
Nikolay E. Andreev ◽  
Brigitte Cros ◽  
Gilles Maynard ◽  
Patrick Mora ◽  
Franck Wojda

Sign in / Sign up

Export Citation Format

Share Document