electron trapping
Recently Published Documents


TOTAL DOCUMENTS

831
(FIVE YEARS 88)

H-INDEX

52
(FIVE YEARS 7)

2022 ◽  
Vol 579 ◽  
pp. 152136
Author(s):  
Patrick Fiorenza ◽  
Emanuela Schilirò ◽  
Giuseppe Greco ◽  
Marilena Vivona ◽  
Marco Cannas ◽  
...  

Author(s):  
Oscar Bentley Jerdmyr Williams ◽  
Khabiboulakh Katsiev ◽  
Byeongjin Baek ◽  
George Harrison ◽  
Geoff Thornton ◽  
...  

2021 ◽  
Vol 10 ◽  
pp. 101-105
Author(s):  
Duško Dudic

The price and environmental aspects of electricity storage significantly affect the application of green technologies. The electrochemical batteries are currently the best choice for storing electricity for most industrial needs and products. Polymer capacitors show very low energy density compared to conventional batteries and therefore cannot be widely used for electricity disposal. At the same time, all other features of polymer capacitors that characterize battery systems are ideal. After a brief comparison of the basic properties of electrochemical and physical batteries, this paper presents the influence of electron trapping on the energy density of a polyethylene capacitor. The presented results indicate that the phenomenon of electron trapping in polymers can increase the energy deposit of polymer capacitors.


2021 ◽  
Author(s):  
Jinggang Lan ◽  
Yo-ichi Yamamoto ◽  
Toshinori Suzuki ◽  
Vladimir Rybkin

We present condensed-phase first-principles molecular dynamics simulations to elucidate the presence of different electron trapping sites in liquid methanol and their roles in the formation, electronic transitions, and relaxation of solvated electrons (e−met) in methanol. Excess electrons injected into liquid methanol are most likely trapped by methyl groups, but rapidly diffuse to more stable trapping sites with dangling OH bonds. After localization at the sites with one free OH bond (1OH trapping sites), reorientation of other methanol molecules increases the OH coordination number and the trap depth, and ultimately four OH bonds become coordinated with the excess electrons under thermal conditions. The simulation identified four distinct trapping states with different OH coordination numbers. The simulation results also revealed that electronic transitions of e−met are primarily due to charge transfer between electron trapping sites (cavities) formed by OH and methyl groups and that these transitions differ from hydrogenic electronic transitions involving aqueous solvated electrons (e−aq). Such charge transfer also explains the alkyl-chain-length dependence of the photoabsorption peak wavelength and the excited-state lifetime of solvated electrons in primary alcohols.


AIP Advances ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 125316
Author(s):  
Mohamed Bouslama ◽  
P. Vigneshwara Raja ◽  
Florent Gaillard ◽  
Raphael Sommet ◽  
Jean-Christophe Nallatamby
Keyword(s):  

Coatings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1442
Author(s):  
Siti Nur Azella Zaine ◽  
Norani Muti Mohamed ◽  
Mehboob Khatani ◽  
Muhammad Umair Shahid

A dye-sensitized solar cell (DSC) is the third generation of solar technology, utilizing TiO2 nanoparticles with sizes of 20–30 nm as the photoelectrode material. The integration of smaller nanoparticles has the advantage of providing a larger surface area, yet the presence of grain boundaries is inevitable, resulting in a higher probability of electron trapping. This study reports on the improvement of charge transport through the integration of quantum dot (QD) TiO2 with a size of less than 10 nm as the dye absorption photoelectrode layer. The QD TiO2 samples were synthesized through sol–gel and reflux methods in a controlled pH solution without surfactants. The synthesized samples were analyzed using microscopic, diffraction, absorption, as well as spectroscopic analyses. A current–voltage and impedance analysis was used to evaluate the performance of a DSC integrated with synthesized TiO2 as the photoelectrode material. The sample with smaller crystallite structures led to a large surface area and exhibited a higher dye absorption capability. Interestingly, a DSC integrated with QD TiO2 showed a higher steady-state electron density and a lower electron recombination rate. The shallow distribution of the trap state led to an improvement of the electron trapping/de-trapping process between the Fermi level and the conduction band of oxide photoelectrode material, hence improving the lifetime of generated electrons and the overall performance of the DSC.


Author(s):  
Heng Zhu ◽  
Shuyu Xiao ◽  
Wenguang Tu ◽  
Shicheng Yan ◽  
Tingchao He ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document