scholarly journals Optimization of the pulse width and injection time in a double-pass laser amplifier

Author(s):  
Daewoong Park ◽  
Jihoon Jeong ◽  
Tae Jun Yu

We have optimized the input pulse width and injection time to achieve the highest possible output pulse energy in a double-pass laser amplifier using two Nd:YAG rods. For this purpose, we have extended the Frantz–Nodvik equation by simultaneously including both spontaneous emission and pump energy variation. The effective pump energy of the flash lamp was 8.84 J for each gain medium. The energy of 1 J could be amplified to an output energy of 12.17 J with the maximum achieved extraction efficiency of 63.18% when an input pulse having a pulse width of 168 $\unicode[STIX]{x03BC}$s is sent 10 $\unicode[STIX]{x03BC}$s after the absorbed pump energy becomes the maximum value.

2019 ◽  
Vol 29 (3SI) ◽  
pp. 341
Author(s):  
Pham Van Duong ◽  
Nguyen Xuan Tu ◽  
Nguyen Van Diep ◽  
Minh Hong Pham ◽  
Nobuhiko Sarukura ◽  
...  

We report the successful development of an all-solid state laser based on a Czochralski method-grown cerium-doped lithium calcium aluminum fluoride (Ce3+:LiCaAlF6 or Ce:LiCAF) crystal as the gain medium. Results for the broadband, narrow linewidth and short pulse laser emission are obtained by pumping the crystal with 7 ns pulses from the fourth harmonics (266 nm) of a Nd:YAG laser operating at 10 Hz. The effects of output coupler reflectivity, resonator length and pump energy on the laser pulse duration were explored. With broadband configuration, a maximum output pulse energy of 3.4 mJ and a slope efficiency of about 33% were achieved. By optimizing the parameters of the resonator and pump laser energy, 450 ps UV laser pulses were generated from resonator transient conditions of low-Q and short resonator under a near threshold pump energy. With narrow linewidth configuration, where the end mirror is replaced by a grating, tunability from 281 nm to 299 nm is also achieved with a linewidth of about 0.2 nm.


Photonics ◽  
2021 ◽  
Vol 8 (4) ◽  
pp. 97
Author(s):  
Shengzhe Ji ◽  
Wenfa Huang ◽  
Tao Feng ◽  
Long Pan ◽  
Jiangfeng Wang ◽  
...  

In this paper, a model to predict the thermal effects in a flashlamp-pumped direct-liquid-cooled split-disk Nd:LuAG ceramic laser amplifier has been presented. In addition to pumping distribution, the model calculates thermal-induced wavefront aberration as a function of temperature, thermal stress and thermal deformation in the gain medium. Experimental measurements are carried out to assess the accuracy of the model. We expect that this study will assist in the design and optimization of high-energy lasers operated at repetition rate.


1999 ◽  
Vol 48 (6) ◽  
pp. 1018-1022 ◽  
Author(s):  
K. Kuroda ◽  
H. Takakura
Keyword(s):  

1977 ◽  
Vol 16 (6) ◽  
pp. 1553 ◽  
Author(s):  
P. Burlamacchi ◽  
R. Coisson ◽  
R. Pratesi ◽  
D. Pucci

2012 ◽  
Vol 476-478 ◽  
pp. 1305-1308
Author(s):  
Chun Feng Sun ◽  
Wei Guang Zhang

Pulse width modulation (PWM) is often one of the important power regulation method of ultrasonic power supply. The traditional PWM control circuit has the shortcomings of complex design structure, slow dynamic response and low reliability. An advanced PWM technique for choppers of ultrasonic power supply based on FPGA is proposed. Through open-loop operation, it regulates the output pulse width of ultrasonic power supply dynamically. The simulation result shows that the PWM control circuit based on FPGA can realize to adjust the width of PWM signal and power regulation conveniently.


Author(s):  
Muhammad Syauqi Kusyairi Bin Jamalus ◽  
Nelidya Md. Yusoff ◽  
Abdul Hadi Sulaiman

<span>This paper shows dual stage thulium-doped fiber amplifiers (TDFAs) that use a pump power distribution technique. Simulations were done with signals ranging from 1975 nm to 2000 nm using the OptiSystem v.13 software. The results required were gathered from the software. The results of gain, noise figure, optical signal-to-noise ratio (OSNR) and output power were obtained. The highest gain and lowest noise figure results were achieved for the double pass dual stage TDFA configuration with values of 19.85 dB and 5.58 dB respectively, followed by the single pass dual stage TDFA. The OSNR and output power performances were also better for the double pass dual stage TDFA, obtaining 57.12 dB and 19.55 dBm respectively. This study shows that thulium can be used in the 2 µm region as an active gain medium and the dual stage architecture and distributed pumping technique proves to be effective techniques to obtain the desired results. Experimental work will be done in the future with the simulated results used as a reference.</span>


Sign in / Sign up

Export Citation Format

Share Document