Direct numerical simulation of hypersonic turbulent boundary layers. Part 4. Effect of high enthalpy

2011 ◽  
Vol 684 ◽  
pp. 25-59 ◽  
Author(s):  
L. Duan ◽  
M. P. Martín

AbstractIn this paper we present direct numerical simulations (DNS) of hypersonic turbulent boundary layers to study high-enthalpy effects. We study high- and low-enthalpy conditions, which are representative of those in hypersonic flight and ground-based facilities, respectively. We find that high-enthalpy boundary layers closely resemble those at low enthalpy. Many of the scaling relations for low-enthalpy flows, such as van-Driest transformation for the mean velocity, Morkovin’s scaling and the modified strong Reynolds analogy hold or can be generalized for high-enthalpy flows by removing the calorically perfect-gas assumption. We propose a generalized form of the modified Crocco relation, which relates the mean temperature and mean velocity across a wide range of conditions, including non-adiabatic cold walls and real gas effects. The DNS data predict Reynolds analogy factors in the range of those found in experimental data at low-enthalpy conditions. The gradient transport model approximately holds with turbulent Prandtl number and turbulent Schmidt number of order unity. Direct compressibility effects remain small and insignificant for all enthalpy cases. High-enthalpy effects have no sizable influence on turbulent kinetic energy (TKE) budgets or on the turbulence structure.

2008 ◽  
Vol 615 ◽  
pp. 445-475 ◽  
Author(s):  
SHIVSAI AJIT DIXIT ◽  
O. N. RAMESH

Experiments were done on sink flow turbulent boundary layers over a wide range of streamwise pressure gradients in order to investigate the effects on the mean velocity profiles. Measurements revealed the existence of non-universal logarithmic laws, in both inner and defect coordinates, even when the mean velocity descriptions departed strongly from the universal logarithmic law (with universal values of the Kármán constant and the inner law intercept). Systematic dependences of slope and intercepts for inner and outer logarithmic laws on the strength of the pressure gradient were observed. A theory based on the method of matched asymptotic expansions was developed in order to explain the experimentally observed variations of log-law constants with the non-dimensional pressure gradient parameter (Δp=(ν/ρU3τ)dp/dx). Towards this end, the system of partial differential equations governing the mean flow was reduced to inner and outer ordinary differential equations in self-preserving form, valid for sink flow conditions. Asymptotic matching of the inner and outer mean velocity expansions, extended to higher orders, clearly revealed the dependence of slope and intercepts on pressure gradient in the logarithmic laws.


2002 ◽  
Vol 461 ◽  
pp. 61-91 ◽  
Author(s):  
A. E. PERRY ◽  
IVAN MARUSIC ◽  
M. B. JONES

A new approach to the classic closure problem for turbulent boundary layers is presented. This involves, first, using the well-known mean-flow scaling laws such as the log law of the wall and the law of the wake of Coles (1956) together with the mean continuity and the mean momentum differential and integral equations. The important parameters governing the flow in the general non-equilibrium case are identified and are used for establishing a framework for closure. Initially closure is achieved here empirically and the potential for achieving closure in the future using the wall-wake attached eddy model of Perry & Marusic (1995) is outlined. Comparisons are made with experiments covering adverse-pressure-gradient flows in relaxing and developing states and flows approaching equilibrium sink flow. Mean velocity profiles, total shear stress and Reynolds stress profiles can be computed for different streamwise stations, given an initial upstream mean velocity profile and the streamwise variation of free-stream velocity. The attached eddy model of Perry & Marusic (1995) can then be utilized, with some refinement, to compute the remaining unknown quantities such as Reynolds normal stresses and associated spectra and cross-power spectra in the fully turbulent part of the flow.


2005 ◽  
Author(s):  
Rau´l Bayoa´n Cal ◽  
Xia Wang ◽  
Luciano Castillo

Applying similarity analysis to the RANS equations of motion for a pressure gradient turbulent boundary layer, Castillo and George [1] obtained the scalings for the mean deficit velocity and the Reynolds stresses. Following this analysis, Castillo and George studied favorable pressure gradient (FPG) turbulent boundary layers. They were able to obtain a single curve for FPG flows when scaling the mean deficit velocity profiles. In this study, FPG turbulent boundary layers are analyzed as well as relaminarized boundary layers subjected to an even stronger FPG. It is found that the mean deficit velocity profiles diminish when scaled using the Castillo and George [1] scaling, U∞, and the Zagarola and Smits [2] scaling, U∞δ*/δ. In addition, Reynolds stress data has been analyzed and it is found that the relaminarized boundary layer data decreases drastically in all components of the Reynolds stresses. Furthermore, it will be shown that the shape of the profile for the wall-normal and Reynolds shear stress components change drastically given the relaminarized state. Therefore, the mean velocity deficit profiles as well as Reynolds stresses are found to be necessary in order to understand not only FPG flows, but also relaminarized boundary layers.


2001 ◽  
Vol 428 ◽  
pp. 1-27 ◽  
Author(s):  
M. B. JONES ◽  
IVAN MARUSIC ◽  
A. E. PERRY

An experimental and theoretical investigation of turbulent boundary layers developing in a sink-flow pressure gradient was undertaken. Three flow cases were studied, corresponding to different acceleration strengths. Mean-flow measurements were taken for all three cases, while Reynolds stresses and spectra measurements were made for two of the flow cases. In this study attention was focused on the evolution of the layers to an equilibrium turbulent state. All the layers were found to attain a state very close to precise equilibrium. This gave equilibrium sink flow data at higher Reynolds numbers than in previous experiments. The mean velocity profiles were found to collapse onto the conventional logarithmic law of the wall. However, for profiles measured with the Pitot tube, a slight ‘kick-up’ from the logarithmic law was observed near the buffer region, whereas the mean velocity profiles measured with a normal hot wire did not exhibit this deviation from the logarithmic law. As the layers approached equilibrium, the mean velocity profiles were found to approach the pure wall profile and for the highest level of acceleration Π was very close to zero, where Π is the Coles wake factor. This supports the proposition of Coles (1957), that the equilibrium sink flow corresponds to pure wall flow. Particular interest was also given to the evolutionary stages of the boundary layers, in order to test and further develop the closure hypothesis of Perry, Marusic & Li (1994). Improved quantitative agreement with the experimental results was found after slight modification of their original closure equation.


2000 ◽  
Vol 408 ◽  
pp. 323-345 ◽  
Author(s):  
T. B. NICKELS ◽  
P. N. JOUBERT

This paper examines changes in the mean velocity profiles of turbulent boundary layers subjected to system rotation. Analysis of the data from several studies conducted in the large rotating wind tunnel at the University of Melbourne shows the existence of a universal linear correction to the velocity profile in the logarithmic region. The appropriate parameters relevant to rotation are derived and correlations are found between the parameters. Flows with adverse pressure gradients, zero pressure gradients and secondary flows are examined and all appear to exhibit the universal linear correction, suggesting that it is robust.


2013 ◽  
Vol 739 ◽  
pp. 392-420 ◽  
Author(s):  
You-Sheng Zhang ◽  
Wei-Tao Bi ◽  
Fazle Hussain ◽  
Zhen-Su She

AbstractA generalized Reynolds analogy (GRA) is proposed for compressible wall-bounded turbulent flows (CWTFs) and validated by direct numerical simulations. By introducing a general recovery factor, a similarity between the Reynolds-averaged momentum and energy equations is established for the canonical CWTFs (i.e. pipes, channels, and flat-plate boundary layers that meet the quasi-one-dimensional flow approximation), independent of Prandtl number, wall temperature, Mach number, Reynolds number, and pressure gradient. This similarity and the relationships between temperature and velocity fields constitute the GRA. The GRA relationship between the mean temperature and the mean velocity takes the same quadratic form as Walz’s equation, with the adiabatic recovery factor replaced by the general recovery factor, and extends the validity of the latter to diabatic compressible turbulent boundary layers and channel/pipe flows. It also derives Duan & Martín’s (J. Fluid Mech., vol. 684, 2011, pp. 25–59) empirical relation for flows at different physical conditions (wall temperature, Mach number, enthalpy condition, surface catalysis, etc.). Several key parameters besides the general recovery factor emerge in the GRA. An effective turbulent Prandtl number is shown to be the reason for the parabolic profile of mean temperature versus mean velocity, and it approximates unity in the fully turbulent region. A dimensionless wall temperature, that we call the diabatic parameter, characterizes the wall-temperature effects in diabatic flows. The GRA also extends the analysis to the fluctuation fields. It recovers the modified strong Reynolds analogy proposed by Huang, Coleman & Bradshaw (J. Fluid Mech., vol. 305, 1995, pp. 185–218) and explains the variation of the temperature–velocity correlation coefficient with wall temperature. Thus, the GRA unveils a generalized similarity principle behind the complex nonlinear coupling between the thermal and velocity fields of CWTFs.


1992 ◽  
Vol 114 (4) ◽  
pp. 537-542 ◽  
Author(s):  
Yang-Moon Koh

By introducing the equivalent roughness which is defined as the distance from the wall to where the velocity gets a certain value (u/uτ ≈ 8.5) and which can be represented by a simple function of the roughness, a simple formula to represent the mean-velocity distribution across the inner layer of a turbulent boundary layer is suggested. The suggested equation is general enough to be applicable to turbulent boundary layers over surfaces of any roughnesses covering from very smooth to completely rough surfaces. The suggested velocity profile is then used to get expressions for pipe-friction factors and skin friction coefficients. These equations are consistent with existing experimental observations and embrace well-known equations (e.g., Prandtl’s friction law for smooth pipes and Colebrook’s formula etc.) as special cases.


2017 ◽  
Vol 820 ◽  
pp. 451-478 ◽  
Author(s):  
Charitha M. de Silva ◽  
Jimmy Philip ◽  
Nicholas Hutchins ◽  
Ivan Marusic

In this paper we examine the characteristics of the interfaces that demarcate regions of relatively uniform streamwise momentum in turbulent boundary layers. The analysis utilises particle image velocimetry databases that span more than an order of magnitude of friction Reynolds number ($Re_{\unicode[STIX]{x1D70F}}=10^{3}$–$10^{4}$), enabling us to provide a detailed description of the interfacial layers as a function of Reynolds number. As reported by Adrianet al.(J. Fluid Mech., vol. 422, 2000, pp. 1–54), these interfaces appear as persistent regions of strong shear with distinct patches of vorticity consistent with a packet-like structure. Here, however, we treat these interfaces as continuous lines, thus averaging the properties of the vortical patches, and find that their geometry is highly contorted and exhibits self-similarity across a wide range of scales. Specifically, the lengths of the edges of uniform momentum zones exhibit a power-law behaviour with a fractal scaling that has a constant exponent across the boundary layer, while the topmost edge or the turbulent/non-turbulent interface shows a sudden increase in the exponent. The accompanying sharp changes in velocity that occur at these edges are found to change in magnitude as a function of wall-normal height, being larger closer to the wall. Further, a Reynolds number invariance is exhibited when the magnitude of the step-like changes in velocity is scaled by the skin-friction velocity, meanwhile, the width across which it occurs is shown to be of the order of the Taylor microscale. Based on these quantitative measures, the Reynolds number scaling observed and the persistent presence of sharp changes in momentum in turbulent boundary layers, a simple model is used to reconstruct the mean velocity profile. Insight gained from the model enhances our understanding of how instantaneous phenomena (such as a zonal-like structural arrangement) manifests in the averaged flow statistics and confirms that the instantaneous momentum in a turbulent boundary layer appears to mainly consist of a step-like profile as a function of wall-normal distance.


Sign in / Sign up

Export Citation Format

Share Document