scholarly journals Numerical simulation of flow past a heated/cooled sphere

2012 ◽  
Vol 692 ◽  
pp. 332-346 ◽  
Author(s):  
Ryoichi Kurose ◽  
Mamiko Anami ◽  
Akitoshi Fujita ◽  
Satoru Komori

AbstractThe characteristics of flow past a heated/cooled sphere are investigated for particle Reynolds numbers $50\leq {\mathit{Re}}_{p} \leq 500$ in conditions with and without buoyancy by means of three-dimensional numerical simulation in which temperature dependence of fluid properties such as density and viscosity is exactly taken into account. The results show that in the absence of buoyancy, drag coefficients of the heated and cooled spheres are larger and smaller than those of the adiabatic case, respectively, and their Nusselt numbers are smaller and larger than the values estimated by a widely used empirical expression for predicting Nusselt numbers, respectively. In addition, the temperature difference between the sphere and ambient fluid strongly affects the flow separation points, size of vortex ring behind the sphere and Strouhal number for vortex shedding. These changes are attributed to the temperature dependence of fluid properties in the vicinity of the sphere. Even in the presence of buoyancy, the temperature dependence of fluid properties strongly affects the drag coefficient and Nusselt number and therefore the Boussinesq approximation becomes inapplicable as the temperature difference increases, regardless of the magnitude of the Richardson number.

2019 ◽  
Vol 118 ◽  
pp. 01041
Author(s):  
Chenggang Yang ◽  
Yuning Zhang ◽  
Fenghe Yan ◽  
Wenguang Zhang ◽  
Wei Li

In this paper, three-dimensional numerical simulation was taken on a Linear Fresnel solar receiver tube using molten salt as heat transfer fluid (HTF), in which the porous media was filled to enhance the heat transfer efficiency. The simulation was to analyze the influence of the different conditions (filling rate, porosity and thermal conductivity) on heat transfer effect and wall temperature difference. The results revealed that the Nu (Nusselt number) increased firstly and then decreased with the increasing filling rate in both center filling and annular filling types. The optimal thermal performance were obtained when filling rate were 0.8 and 0.2 in center filling and annular filling, respectively. The Nu were about 1.7 and 1.5 times as the clear receiver. The circumferential temperature difference decreased firstly and then increased with filling rate increasing in both center filling and annular filling types. The lowest circumferential temperature differences were achieved at the filling rate 0.8 and 0.4 in center filling and annular filling types, and temperature difference decreased 15.88°C and 22°C compared with clear receiver, respectively. The Nu and PEC both decreased with porosity increasing. However, the thermal conductivity of porous media had little influence to the Nu and circumferential wall temperature.


2011 ◽  
Vol 133 (9) ◽  
Author(s):  
Amir Keshmiri

The present work is concerned with the modeling of buoyancy-modified mixed convection flows, such flows being representative of low-flow-rate flows in the cores of Gas-cooled Reactors. Three different eddy viscosity models (EVMs) are examined using the in-house code, “CONVERT.” All fluid properties are assumed to be constant, and buoyancy is accounted for within the Boussinesq approximation. Comparison is made against experimental measurements and the direct numerical simulations (DNS). The effects of three physical parameters including the heat loading, Reynolds number, and pipe length on heat transfer have been examined. It is found that by increasing the heat loading, three thermal-hydraulic regimes of “early onset of mixed convection,” “laminarization,” and “recovery” were present. At different Reynolds numbers, the three thermal-hydraulic regimes are also evident. The k-ε model of Launder and Sharma was found to be in the closest agreement with consistently normalized DNS results for the ratio of mixed-to-forced convection Nusselt number (Nu/Nu0). It was also shown that for the “laminarization” case, the pipe length should be at least “500× diameter” in order to reach a fully developed solution. In addition, the effects of two numerical parameters namely buoyancy production and Yap length-scale correction terms have also been investigated and their effects were found to be negligible on heat transfer and friction coefficient in ascending flows.


1982 ◽  
Vol 104 (1) ◽  
pp. 145-152 ◽  
Author(s):  
W. W. Yousef ◽  
J. D. Tarasuk

The influence of free convection due to buoyancy on forced laminar flow of air in the entrance region of a horizontal isothermal tube was investigated. The Graetz numbers ranged form 2.5 to 110.0, the Reynolds numbers ranged from 120 to 1200, the Grashof numbers ranged from 0.8 × 104 to 8.7 × 104, and the ratio L/D was varied from 6 up to 46. The average Nusselt numbers based on the log-mean temperature difference, ranged from 2.0 to 25.9. The heat transfer data were correlated according to the influence of free convection which was found to have a significant effect at points close to the entrance to the tube.


2010 ◽  
Vol 645 ◽  
pp. 255-278 ◽  
Author(s):  
XAVIER RIEDINGER ◽  
STÉPHANE LE DIZÈS ◽  
PATRICE MEUNIER

In this work, we analyse the linear stability of a frozen Lamb–Oseen vortex in a fluid linearly stratified along the vortex axis. The temporal stability properties of three-dimensional normal modes are obtained under the Boussinesq approximation with a Chebychev collocation spectral code for large ranges of Froude numbers and Reynolds numbers (the Schmidt number being fixed to 700). A specific integration technique in the complex plane is used in order to apply the condition of radiation at infinity. For large Reynolds numbers and small Froude numbers, we show that the vortex is unstable with respect to all non-axisymmetrical waves. The most unstable mode is however always a helical radiative mode (m = 1) which resembles either a displacement mode or a ring mode. The displacement mode is found to be unstable for all Reynolds numbers and for moderate Froude numbers (F ~ 1). The radiative ring mode is by contrast unstable only for large Reynolds numbers above 104 and is the most unstable mode for large Froude numbers (F > 2). The destabilization of this mode for large Froude numbers is shown to be associated with a resonance mechanism which is analysed in detail. Analyses of the scaling and of the spatial structure of the different unstable modes are also provided.


Sign in / Sign up

Export Citation Format

Share Document