Viscous stability properties of a Lamb–Oseen vortex in a stratified fluid

2010 ◽  
Vol 645 ◽  
pp. 255-278 ◽  
Author(s):  
XAVIER RIEDINGER ◽  
STÉPHANE LE DIZÈS ◽  
PATRICE MEUNIER

In this work, we analyse the linear stability of a frozen Lamb–Oseen vortex in a fluid linearly stratified along the vortex axis. The temporal stability properties of three-dimensional normal modes are obtained under the Boussinesq approximation with a Chebychev collocation spectral code for large ranges of Froude numbers and Reynolds numbers (the Schmidt number being fixed to 700). A specific integration technique in the complex plane is used in order to apply the condition of radiation at infinity. For large Reynolds numbers and small Froude numbers, we show that the vortex is unstable with respect to all non-axisymmetrical waves. The most unstable mode is however always a helical radiative mode (m = 1) which resembles either a displacement mode or a ring mode. The displacement mode is found to be unstable for all Reynolds numbers and for moderate Froude numbers (F ~ 1). The radiative ring mode is by contrast unstable only for large Reynolds numbers above 104 and is the most unstable mode for large Froude numbers (F > 2). The destabilization of this mode for large Froude numbers is shown to be associated with a resonance mechanism which is analysed in detail. Analyses of the scaling and of the spatial structure of the different unstable modes are also provided.

2012 ◽  
Vol 692 ◽  
pp. 332-346 ◽  
Author(s):  
Ryoichi Kurose ◽  
Mamiko Anami ◽  
Akitoshi Fujita ◽  
Satoru Komori

AbstractThe characteristics of flow past a heated/cooled sphere are investigated for particle Reynolds numbers $50\leq {\mathit{Re}}_{p} \leq 500$ in conditions with and without buoyancy by means of three-dimensional numerical simulation in which temperature dependence of fluid properties such as density and viscosity is exactly taken into account. The results show that in the absence of buoyancy, drag coefficients of the heated and cooled spheres are larger and smaller than those of the adiabatic case, respectively, and their Nusselt numbers are smaller and larger than the values estimated by a widely used empirical expression for predicting Nusselt numbers, respectively. In addition, the temperature difference between the sphere and ambient fluid strongly affects the flow separation points, size of vortex ring behind the sphere and Strouhal number for vortex shedding. These changes are attributed to the temperature dependence of fluid properties in the vicinity of the sphere. Even in the presence of buoyancy, the temperature dependence of fluid properties strongly affects the drag coefficient and Nusselt number and therefore the Boussinesq approximation becomes inapplicable as the temperature difference increases, regardless of the magnitude of the Richardson number.


2008 ◽  
Vol 608 ◽  
pp. 297-317 ◽  
Author(s):  
N. WILLIAMSON ◽  
N. SRINARAYANA ◽  
S. W. ARMFIELD ◽  
G. D. McBAIN ◽  
W. LIN

Experimental evidence for previously unreported fountain behaviour is presented. It has been found that the first unstable mode of a three-dimensional round fountain is a laminar flapping motion that can grow to a circling or multimodal flapping motion. With increasing Froude and Reynolds numbers, fountain behaviour becomes more disorderly, exhibiting a laminar bobbing motion. The transition between steady behaviour, the initial flapping modes and the laminar bobbing flow can be approximately described by a function FrRe2/3=C. The transition to turbulence occurs at Re > 120, independent of Froude number, and the flow appears to be fully turbulent at Re≈2000. For Fr > 10 and Re≲120, sinuous shear-driven instabilities have been observed in the rising fluid column. For Re≳120 these instabilities cause the fountain to intermittently breakdown into turbulent jet-like flow. For Fr≲10 buoyancy forces begin to dominate the flow and pulsing behaviour is observed. A regime map of the fountain behaviour for 0.7≲Fr≲100 and 15≲Re≲1900 is presented and the underlying mechanisms for the observed behaviour are proposed. Movies are available with the online version of the paper.


2012 ◽  
Vol 9 (1) ◽  
pp. 142-146
Author(s):  
O.A. Solnyshkina

In this work the 3D dynamics of two immiscible liquids in unbounded domain at low Reynolds numbers is considered. The numerical method is based on the boundary element method, which is very efficient for simulation of the three-dimensional problems in infinite domains. To accelerate calculations and increase the problem size, a heterogeneous approach to parallelization of the computations on the central (CPU) and graphics (GPU) processors is applied. To accelerate the iterative solver (GMRES) and overcome the limitations associated with the size of the memory of the computation system, the software component of the matrix-vector product


2012 ◽  
Vol 696 ◽  
pp. 228-262 ◽  
Author(s):  
A. Kourmatzis ◽  
J. S. Shrimpton

AbstractThe fundamental mechanisms responsible for the creation of electrohydrodynamically driven roll structures in free electroconvection between two plates are analysed with reference to traditional Rayleigh–Bénard convection (RBC). Previously available knowledge limited to two dimensions is extended to three-dimensions, and a wide range of electric Reynolds numbers is analysed, extending into a fully inherently three-dimensional turbulent regime. Results reveal that structures appearing in three-dimensional electrohydrodynamics (EHD) are similar to those observed for RBC, and while two-dimensional EHD results bear some similarities with the three-dimensional results there are distinct differences. Analysis of two-point correlations and integral length scales show that full three-dimensional electroconvection is more chaotic than in two dimensions and this is also noted by qualitatively observing the roll structures that arise for both low (${\mathit{Re}}_{E} = 1$) and high electric Reynolds numbers (up to ${\mathit{Re}}_{E} = 120$). Furthermore, calculations of mean profiles and second-order moments along with energy budgets and spectra have examined the validity of neglecting the fluctuating electric field ${ E}_{i}^{\ensuremath{\prime} } $ in the Reynolds-averaged EHD equations and provide insight into the generation and transport mechanisms of turbulent EHD. Spectral and spatial data clearly indicate how fluctuating energy is transferred from electrical to hydrodynamic forms, on moving through the domain away from the charging electrode. It is shown that ${ E}_{i}^{\ensuremath{\prime} } $ is not negligible close to the walls and terms acting as sources and sinks in the turbulent kinetic energy, turbulent scalar flux and turbulent scalar variance equations are examined. Profiles of hydrodynamic terms in the budgets resemble those in the literature for RBC; however there are terms specific to EHD that are significant, indicating that the transfer of energy in EHD is also attributed to further electrodynamic terms and a strong coupling exists between the charge flux and variance, due to the ionic drift term.


2000 ◽  
Vol 411 ◽  
pp. 1-38 ◽  
Author(s):  
C. ROSS ETHIER ◽  
SUJATA PRAKASH ◽  
DAVID A. STEINMAN ◽  
RICHARD L. LEASK ◽  
GREGORY G. COUCH ◽  
...  

Numerical and experimental techniques were used to study the physics of flow separation for steady internal flow in a 45° junction geometry, such as that observed between two pipes or between the downstream end of a bypass graft and an artery. The three-dimensional Navier–Stokes equations were solved using a validated finite element code, and complementary experiments were performed using the photochromic dye tracer technique. Inlet Reynolds numbers in the range 250 to 1650 were considered. An adaptive mesh refinement approach was adopted to ensure grid-independent solutions. Good agreement was observed between the numerical results and the experimentally measured velocity fields; however, the wall shear stress agreement was less satisfactory. Just distal to the ‘toe’ of the junction, axial flow separation was observed for all Reynolds numbers greater than 250. Further downstream (approximately 1.3 diameters from the toe), the axial flow again separated for Re [ges ] 450. The location and structure of axial flow separation in this geometry is controlled by secondary flows, which at sufficiently high Re create free stagnation points on the model symmetry plane. In fact, separation in this flow is best explained by a secondary flow boundary layer collision model, analogous to that proposed for flow in the entry region of a curved tube. Novel features of this flow include axial flow separation at modest Re (as compared to flow in a curved tube, where separation occurs only at much higher Re), and the existence and interaction of two distinct three-dimensional separation zones.


2016 ◽  
Vol 13 (116) ◽  
pp. 20160068 ◽  
Author(s):  
Gen Li ◽  
Ulrike K. Müller ◽  
Johan L. van Leeuwen ◽  
Hao Liu

Larvae of bony fish swim in the intermediate Reynolds number ( Re ) regime, using body- and caudal-fin undulation to propel themselves. They share a median fin fold that transforms into separate median fins as they grow into juveniles. The fin fold was suggested to be an adaption for locomotion in the intermediate Reynolds regime, but its fluid-dynamic role is still enigmatic. Using three-dimensional fluid-dynamic computations, we quantified the swimming trajectory from body-shape changes during cyclic swimming of larval fish. We predicted unsteady vortices around the upper and lower edges of the fin fold, and identified similar vortices around real larvae with particle image velocimetry. We show that thrust contributions on the body peak adjacent to the upper and lower edges of the fin fold where large left–right pressure differences occur in concert with the periodical generation and shedding of edge vortices. The fin fold enhances effective flow separation and drag-based thrust. Along the body, net thrust is generated in multiple zones posterior to the centre of mass. Counterfactual simulations exploring the effect of having a fin fold across a range of Reynolds numbers show that the fin fold helps larvae achieve high swimming speeds, yet requires high power. We conclude that propulsion in larval fish partly relies on unsteady high-intensity vortices along the upper and lower edges of the fin fold, providing a functional explanation for the omnipresence of the fin fold in bony-fish larvae.


2008 ◽  
Vol 615 ◽  
pp. 371-399 ◽  
Author(s):  
S. DONG

We report three-dimensional direct numerical simulations of the turbulent flow between counter-rotating concentric cylinders with a radius ratio 0.5. The inner- and outer-cylinder Reynolds numbers have the same magnitude, which ranges from 500 to 4000 in the simulations. We show that with the increase of Reynolds number, the prevailing structures in the flow are azimuthal vortices with scales much smaller than the cylinder gap. At high Reynolds numbers, while the instantaneous small-scale vortices permeate the entire domain, the large-scale Taylor vortex motions manifested by the time-averaged field do not penetrate a layer of fluid near the outer cylinder. Comparisons between the standard Taylor–Couette system (rotating inner cylinder, fixed outer cylinder) and the counter-rotating system demonstrate the profound effects of the Coriolis force on the mean flow and other statistical quantities. The dynamical and statistical features of the flow have been investigated in detail.


2002 ◽  
Vol 450 ◽  
pp. 67-95 ◽  
Author(s):  
CH. BLOHM ◽  
H. C. KUHLMANN

The incompressible fluid flow in a rectangular container driven by two facing sidewalls which move steadily in anti-parallel directions is investigated experimentally for Reynolds numbers up to 1200. The moving sidewalls are realized by two rotating cylinders of large radii tightly closing the cavity. The distance between the moving walls relative to the height of the cavity (aspect ratio) is Γ = 1.96. Laser-Doppler and hot-film techniques are employed to measure steady and time-dependent vortex flows. Beyond a first threshold robust, steady, three-dimensional cells bifurcate supercritically out of the basic flow state. Through a further instability the cellular flow becomes unstable to oscillations in the form of standing waves with the same wavelength as the underlying cellular flow. If both sidewalls move with the same velocity (symmetrical driving), the oscillatory instability is found to be tricritical. The dependence on two sidewall Reynolds numbers of the ranges of existence of steady and oscillatory cellular flows is explored. Flow symmetries and quantitative velocity measurements are presented for representative cases.


1976 ◽  
Vol 73 (1) ◽  
pp. 153-164 ◽  
Author(s):  
P.-A. Mackrodt

The linear stability of Hagen-Poiseuille flow (Poiseuille pipe flow) with superimposed rigid rotation against small three-dimensional disturbances is examined at finite and infinite axial Reynolds numbers. The neutral curve, which is obtained by numerical solution of the system of perturbation equations (derived from the Navier-Stokes equations), has been confirmed for finite axial Reynolds numbers by a few simple experiments. The results suggest that, at high axial Reynolds numbers, the amount of rotation required for destabilization could be small enough to have escaped notice in experiments on the transition to turbulence in (nominally) non-rotating pipe flow.


Author(s):  
Francine Battaglia ◽  
George Papadopoulos

The effect of three-dimensionality on low Reynolds number flows past a symmetric sudden expansion in a channel was investigated. The geometric expansion ratio of in the current study was 2:1 and the aspect ratio was 6:1. Both experimental velocity measurements and two- and three-dimensional simulations for the flow along the centerplane of the rectangular duct are presented for Reynolds numbers in the range of 150 to 600. Comparison of the two-dimensional simulations with the experiments revealed that the simulations fail to capture completely the total expansion effect on the flow, which couples both geometric and hydrodynamic effects. To properly do so requires the definition of an effective expansion ratio, which is the ratio of the downstream and upstream hydraulic diameters and is therefore a function of both the expansion and aspect ratios. When the two-dimensional geometry was consistent with the effective expansion ratio, the new results agreed well with the three-dimensional simulations and the experiments. Furthermore, in the range of Reynolds numbers investigated, the laminar flow through the expansion underwent a symmetry-breaking bifurcation. The critical Reynolds number evaluated from the experiments and the simulations was compared to other values reported in the literature. Overall, side-wall proximity was found to enhance flow stability, helping to sustain laminar flow symmetry to higher Reynolds numbers in comparison to nominally two-dimensional double-expansion geometries. Lastly, and most importantly, when the logarithm of the critical Reynolds number from all these studies was plotted against the reciprocal of the effective expansion ratio, a linear trend emerged that uniquely captured the bifurcation dynamics of all symmetric double-sided planar expansions.


Sign in / Sign up

Export Citation Format

Share Document