Passive boundary layer control of oblique disturbances by finite-amplitude streaks

2014 ◽  
Vol 749 ◽  
pp. 1-36 ◽  
Author(s):  
Shahab Shahinfar ◽  
Sohrab S. Sattarzadeh ◽  
Jens H. M. Fransson

AbstractRecent experimental results on the attenuation of two-dimensional Tollmien–Schlichting wave (TSW) disturbances by means of passive miniature vortex generators (MVGs) have shed new light on the possibility of delaying transition to turbulence and hence accomplishing skin-friction drag reduction. A recurrent concern has been whether this passive flow control strategy would work for other types of disturbances than plane TSWs in an experimental configuration where the incoming disturbance is allowed to fully interact with the MVG array. In the present experimental investigation we show that not only TSW disturbances are attenuated, but also three-dimensional single oblique wave (SOW) and pair of oblique waves (POW) disturbances are quenched in the presence of MVGs, and that transition delay can be obtained successfully. For the SOW disturbance an unusual interaction between the wave and the MVGs occurs, leading to a split of the wave with one part travelling with a ‘mirrored’ phase angle with respect to the spanwise direction on one side of the MVG centreline. This gives rise to $\Lambda $-vortices on the centreline, which force a low-speed streak on the centreline, strong enough to overcome the high-speed streak generated by the MVGs themselves. Both these streaky boundary layers seem to act stabilizing on unsteady perturbations. The challenge in a passive control method making use of a non-modal type of disturbances to attenuate modal disturbances lies in generating stable streamwise streaks which do not themselves break down to turbulence.

2014 ◽  
Vol 764 ◽  
Author(s):  
L. Siconolfi ◽  
S. Camarri ◽  
J. H. M. Fransson

AbstractIn this numerical investigation we explore the possibility of applying free-stream vortices as a passive flow control method for delaying the transition to turbulence. The work is motivated by previous experimental studies demonstrating that stable streamwise boundary layer (BL) streaks can attenuate both two- and three-dimensional disturbances inside the BL, leading to transition delay, with the implication of reducing skin-friction drag. To date, successful control has been obtained using physical BL modulators mounted on the surface in order to generate stable streaks. However, surface mounted BL modulators are doomed to failure when the BL is subject to free-stream turbulence (FST), since a destructive interaction between the two is inevitable. In order to tackle free-stream disturbances, such as FST, a smooth surface is desired, which has motivated us to seek new methods to induce streamwise streaks inside the BL. A first step, in a systematic order, is taken in the present paper to prove the control idea of generating free-stream vortices for the attenuation of ordinary Tollmien–Schlichting waves inside the BL. In this proof-of-concept study we show that, by applying a spanwise array of counter-rotating free-stream vortices, inducing streamwise BL streaks further downstream, it is possible to alter the BL stability characteristics to such a degree that transition delay may be accomplished. For the demonstration we use direct numerical simulations along with stability analysis.


The effect of small imperfections in shear flows on the development of finite-amplitude three-dimensional disturbances in the flow is examined. A model problem is studied, one in which the basic flow is plane Poiseuille flow in a channel and the small imperfection in the form of spanwise periodic variation of the basic flow is introduced from the channel boundaries. It is shown that this has a positive effect on the growth of larger Tollmien-Schlichting wave disturbances, which are in the form of standing waves in the spanwise direction. Equations for the amplitudes of these disturbances, based on Stuart-Watson-Eckhaus theory, are derived and over a range of Reynolds number, the regions in the wavenumber plane over which equilibrium solutions are possible are identified. The possibility of three-dimensional disturbances that are oscillatory in the streamwise direction but that may be growing exponentially in a spanwise direction is examined.


2019 ◽  
Vol 880 ◽  
Author(s):  
Stefan Zammert ◽  
Bruno Eckhardt

Plane Poiseuille flow, the pressure-driven flow between parallel plates, shows a route to turbulence connected with a linear instability to Tollmien–Schlichting (TS) waves, and another route, the bypass transition, that can be triggered with finite-amplitude perturbation. We use direct numerical simulations to explore the arrangement of the different routes to turbulence among the set of initial conditions. For plates that are a distance $2H$ apart, and in a domain of width $2\unicode[STIX]{x03C0}H$ and length $2\unicode[STIX]{x03C0}H$, the subcritical instability to TS waves sets in at $Re_{c}=5815$ and extends down to $Re_{TS}\approx 4884$. The bypass route becomes available above $Re_{E}=459$ with the appearance of three-dimensional, finite-amplitude travelling waves. Below $Re_{c}$, TS transition appears for a tiny region of initial conditions that grows with increasing Reynolds number. Above $Re_{c}$, the previously stable region becomes unstable via TS waves, but a sharp transition to the bypass route can still be identified. Both routes lead to the same turbulent state in the final stage of the transition, but on different time scales. Similar phenomena can be expected in other flows where two or more routes to turbulence compete.


2014 ◽  
Vol 757 ◽  
pp. 908-942 ◽  
Author(s):  
K. Matsuura ◽  
M. Nakano

AbstractThis study investigates the suppression of the sound produced when a jet, issued from a circular nozzle or hole in a plate, goes through a similar hole in a second plate. The sound, known as a hole tone, is encountered in many practical engineering situations. The mean velocity of the air jet $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}u_0$ was $6\text {--}12\ \mathrm{m}\ {\mathrm{s}}^{-1}$. The nozzle and the end plate hole both had a diameter of 51 mm, and the impingement length $L_{im}$ between the nozzle and the end plate was 50–90 mm. We propose a novel passive control method of suppressing the tone with an axisymmetric obstacle on the end plate. We find that the effect of the obstacle is well described by the combination ($W/L_{im}$, $h$) where $W$ is the distance from the edge of the end plate hole to the inner wall of the obstacle, and $h$ is the obstacle height. The tone is suppressed when backflows from the obstacle affect the jet shear layers near the nozzle exit. We do a direct sound computation for a typical case where the tone is successfully suppressed. Axisymmetric uniformity observed in the uncontrolled case is broken almost completely in the controlled case. The destruction is maintained by the process in which three-dimensional vortices in the jet shear layers convect downstream, interact with the obstacle and recursively disturb the jet flow from the nozzle exit. While regions near the edge of the end plate hole are responsible for producing the sound in the controlled case as well as in the uncontrolled case, acoustic power in the controlled case is much lower than in the uncontrolled case because of the disorganized state.


2021 ◽  
Vol 11 (15) ◽  
pp. 6899
Author(s):  
Abdul Aabid ◽  
Sher Afghan Khan ◽  
Muneer Baig

In high-speed fluid dynamics, base pressure controls find many engineering applications, such as in the automobile and defense industries. Several studies have been reported on flow control with sudden expansion duct. Passive control was found to be more beneficial in the last four decades and is used in devices such as cavities, ribs, aerospikes, etc., but these need additional control mechanics and objects to control the flow. Therefore, in the last two decades, the active control method has been used via a microjet controller at the base region of the suddenly expanded duct of the convergent–divergent (CD) nozzle to control the flow, which was found to be a cost-efficient and energy-saving method. Hence, in this paper, a systemic literature review is conducted to investigate the research gap by reviewing the exhaustive work on the active control of high-speed aerodynamic flows from the nozzle as the major focus. Additionally, a basic idea about the nozzle and its configuration is discussed, and the passive control method for the control of flow, jet and noise are represented in order to investigate the existing contributions in supersonic speed applications. A critical review of the last two decades considering the challenges and limitations in this field is expressed. As a contribution, some major and minor gaps are introduced, and we plot the research trends in this field. As a result, this review can serve as guidance and an opportunity for scholars who want to use an active control approach via microjets for supersonic flow problems.


2002 ◽  
Vol 472 ◽  
pp. 229-261 ◽  
Author(s):  
LUCA BRANDT ◽  
DAN S. HENNINGSON

A transition scenario initiated by streamwise low- and high-speed streaks in a flat-plate boundary layer is studied. In many shear flows, the perturbations that show the highest potential for transient energy amplification consist of streamwise-aligned vortices. Due to the lift-up mechanism these optimal disturbances lead to elongated streamwise streaks downstream, with significant spanwise modulation. In a previous investigation (Andersson et al. 2001), the stability of these streaks in a zero-pressure-gradient boundary layer was studied by means of Floquet theory and numerical simulations. The sinuous instability mode was found to be the most dangerous disturbance. We present here the first simulation of the breakdown to turbulence originating from the sinuous instability of streamwise streaks. The main structures observed during the transition process consist of elongated quasi-streamwise vortices located on the flanks of the low-speed streak. Vortices of alternating sign are overlapping in the streamwise direction in a staggered pattern. The present scenario is compared with transition initiated by Tollmien–Schlichting waves and their secondary instability and by-pass transition initiated by a pair of oblique waves. The relevance of this scenario to transition induced by free-stream turbulence is also discussed.


1995 ◽  
Vol 290 ◽  
pp. 203-212
Author(s):  
Melvin E. Stern

An inviscid laminar boundary layer flow Û(ŷ) with vertical thickness λy, and free stream velocity U is disturbed at time $\tcirc$ = 0 by a normal velocity $\vcirc$ and by a spanwise velocity ŵ([xcirc ],ŷ, $\zcirc$, 0) of finite amplitude αU, with spanwise ($\zcirc$) scale λz, and streamwise ([xcirc ]) scale λx = λz/α; the streamwise velocity û([xcirc ],ŷ,$\zcirc$,$\tcirc$) is initially undisturbed. A long wave λy/λz → 0) expansion of the Euler equations for fixed α and time scale $\tcirc$s = U−1λz/α results in a hyperbolic equation for Lagrangian displacements ŷ. Within the interval $\tcirc$ > $\tcirc$s of asymptotic validity, finite parcel displacements (O(λy)) with finite (O(U)) û fluctuations occur, independent of α no matter how small; the basic flow Û is therefore said to be unstable to streaky (λx [Gt ] λz) spanwise perturbations. The temporal development of the ('spot’) region in the (x,z) plane wherein inflected û profiles appear is computed and qualitatively related to observations of ‘breakdown’ and transition to turbulence in the flow over a flat plate. The maximum $\vcirc$([xcirc ],ŷ,$\zcirc$,$\tcirc$) increases monotonically to infinity as $\tcirc$ → $\tcirc$s.


1996 ◽  
Vol 326 ◽  
pp. 1-36 ◽  
Author(s):  
FréDÉRic Ducros, Pierre Comte ◽  
Marcel Lesieur

It is well known that subgrid models such as Smagorinsky's cannot be used for the spatially growing simulation of the transition to turbulence of flat-plate boundary layers, unless large-amplitude perturbations are introduced at the upstream boundary: they are over-dissipative, and the flow simulated remains laminar. This is also the case for the structure-function model (SF) of Métais & Lesieur (1992). In the present paper we present a sequel to this model, the filtered-structure-function (FSF) model. It consists of removing the large-scale fluctuations of the field before computing its second-order structure function. Analytical arguments confirm the superiority of the FSF model over the SF model for large-eddy simulations of weakly unstable transitional flows. The FSF model is therefore used for the simulation of a quasi-incompressible (M∞ = 0.5) boundary layer developing spatially over an adiabatic flat plate, with a low level of upstream forcing. With the minimal resolution 650 × 32 × 20 grid points covering a range of streamwise Reynolds numbers Rex1 ε [3.4 × 105, 1.1 × 106], transition is obtained for 80 hours of time-processing on a CRAY 2 (whereas DNS of the whole transition takes about ten times longer). Statistics of the LES are found to be in acceptable agreement with experiments and empirical laws, in the laminar, transitional and turbulent parts of the domain. The dynamics of low-pressure and high-vorticity distributions is examined during transition, with particular emphasis on the neighbourhood of the critical layer (defined here as the height of the fluid travelling at a speed equal to the phase speed of the incoming Tollmien–Schlichting waves). Evidence is given that a subharmonic-type secondary instability grows, followed by a purely spanwise (i.e. time-independent) mode which yields peak-and-valley splitting and transition to turbulence. In the turbulent region, flow visualizations and local instantaneous profiles are provided. They confirm the presence of low- and high-speed streaks at the wall, weak hairpins stretched by the flow and bursting events. It is found that most of the vorticity is produced in the spanwise direction, at the wall, below the high-speed streaks. Isosurfaces of eddy viscosity confirm that the FSF model does not perturb transition much, and acts mostly in the vicinity of the hairpins.


2017 ◽  
Vol 95 (10) ◽  
pp. 894-899
Author(s):  
Mouhammad El Hassan ◽  
Laurent Keirsbulck

Passive control of the flow over a deep cavity at low subsonic velocity is considered in the present paper. The cavity length-to-depth aspect ratio is L/H = 0.2. particle image velocimetry (PIV) measurements characterized the flow over the cavity and show the influence of the control method on the cavity shear layer development. It is found that both the “cylinder” and the “shaped cylinder”, placed upstream from the cavity leading edge, result in the suppression of the aero-acoustic coupling and highly reduce the cavity noise. It should be noted that the vortical structures impinge at almost the same location near the cavity downstream corner with and without passive control. The present study allows to identify an innovative passive flow control method of cavity resonance. Indeed, the use of a “shaped cylinder” presents similar suppression of the cavity resonance as with the “cylinder” but with less impact on the cavity flow. The “shaped cylinder” results in a smaller shear layer growth than the cylinder. Velocity deficiency and turbulence levels are less pronounced using the “shaped cylinder”. The “cylinder” tends to diffuse the vorticity in the cavity shear layer and thus the location of the maximum vorticity is more affected as compared to the “shaped cylinder” control. The fact that the “shaped cylinder” is capable of suppressing the cavity resonance, despite the vortex shedding and the high frequency forcing being suppressed, is of high interest from fundamental and applied points of view.


2012 ◽  
Vol 698 ◽  
pp. 211-234 ◽  
Author(s):  
Jens H. M. Fransson ◽  
Alessandro Talamelli

AbstractA study on the generation and development of high-amplitude steady streamwise streaks in a flat-plate boundary layer is presented. High-amplitude streamwise streaks are naturally present in many bypass transition scenarios, where they play a fundamental role in the breakdown to turbulence process. On the other hand, recent experiments and numerical simulations have shown that stable laminar streamwise streaks of alternating low and high speed are also capable of stabilizing the growth of Tollmien–Schlichting waves as well as localized disturbances and to delay transition. The larger the streak amplitude is, for a prescribed spanwise periodicity of the streaks, the stronger is the stabilizing mechanism. Previous experiments have shown that streaks of amplitudes up to 12 % of the free stream velocity can be generated by means of cylindrical roughness elements. Here we explore the possibility of generating streaks of much larger amplitude by using a row of miniature vortex generators (MVGs) similar to those used in the past to delay or even prevent boundary layer separation. In particular, we present a boundary layer experiment where streak amplitudes exceeding 30 % have been produced without having any secondary instability acting on them. Furthermore, the associated drag with the streaky base flow is quantified, and it is demonstrated that the streaks can be reinforced by placing a second array of MVGs downstream of the first one. In this way it is possible to make the control more persistent in the downstream direction. It must be pointed out that the use of MVGs opens also the possibility to set up a control method that acts twofold in the sense that both transition and separation are delayed or even prevented.


Sign in / Sign up

Export Citation Format

Share Document