Direct numerical simulation of a turbulent flow in a rotating channel with a sudden expansion

2014 ◽  
Vol 745 ◽  
pp. 92-131 ◽  
Author(s):  
Eric Lamballais

AbstractThe effects of spanwise rotation on the channel flow across a symmetric sudden expansion are investigated using direct numerical simulation. Four rotation regimes are considered with the same Reynolds number$\mathit{Re}=5000$and expansion ratio$\mathit{Er}=3/2$. Upstream from the expansion, inflow turbulent conditions are generated realistically for each rotation rate through a very simple and efficient technique of recycling without the need for any precursor calculation. As the rotation is increased, the flow becomes progressively asymmetric with stabilization (destabilization) effects on the cyclonic (anticyclonic) side, respectively. These rotation effects, already present in the upstream channel, lead further downstream to an increase (reduction) of the separation size behind the cyclonic (anticyclonic) step. In the cyclonic separation, the free-shear layer created behind the step corner leads to the formation of large-scale spanwise vortices that become increasingly two-dimensional as the rotation is increased. Conversely, in the anticyclonic region, the turbulent structures in the separated layer are more elongated in the streamwise direction and also more active in promoting reattachment. For the highest rotation rate, a secondary separation is observed further downstream in the anticyclonic region, leading to the establishment of an elongated recirculation bubble that deflects the main flow towards the cyclonic wall. The highest level of turbulent kinetic energy is obtained at high rotation near the cyclonic reattachment in a region where stabilization effects are expected. The phenomenological model of absolute vortex stretching is found to be useful in understanding how the rotation influences the dynamics in the various regions of the flow.

2021 ◽  
Author(s):  
Federico Dalla Barba ◽  
Francesco Picano

AbstractThe natural processes involved in the scouring of submerged sediments are crucially relevant in geomorphology along with environmental, fluvial, and oceanographic engineering. Despite their relevance, the phenomena involved are far from being completely understood, in particular for what concerns cohesive or stony substrates with brittle bulk mechanical properties. In this frame, we address the investigation of the mechanisms that govern the scouring and pattern formation on an initially flattened bed of homogenous and brittle material in a turbulent channel flow, employing direct numerical simulation. The problem is numerically tackled in the frame of peridynamic theory, which has intrinsic capabilities of reliably reproducing crack formation, coupled with the Navier–Stokes equations by the immersed boundary method. The numerical approach is reported in detail here and in the references, where extensive and fully coupled benchmarks are provided. The present paper focuses on the role of turbulence in promoting the brittle fragmentation of a solid, brittle streambed. A detailed characterization of the bedforms that originate on the brittle substrate is provided, alongside an analysis of the correlation between bed shape and the turbulent structures of the flow. We find that turbulent fluctuations locally increase the intensity of the wall-stresses producing localized damages. The accumulation of damage drives the scouring of the solid bed via a turbulence-driven fatigue mechanism. The formation, propagation, and coalescence of scouring structures are observed. In turn, these affect both the small- and large-scale structures of the turbulent flow, producing an enhancement of turbulence intensity and wall-stresses. At the small length scales, this phenomenology is put in relation to the formation of vortical cells that persist over the peaks of the channel bed. Similarly, large-scale irregularities are found to promote the formation of stationary turbulent stripes and large-scale vortices that enhance the widening and deepening of scour holes. As a result, we observe a quadratic increment of the volumetric erosion rate of the streambed, as well as a widening of the probability density of high-intensity wall stress on the channel bed.


2018 ◽  
Vol 857 ◽  
pp. 878-906 ◽  
Author(s):  
T. Nagata ◽  
T. Nonomura ◽  
S. Takahashi ◽  
Y. Mizuno ◽  
K. Fukuda

In this study, direct numerical simulation of the flow around a rotating sphere at high Mach and low Reynolds numbers is conducted to investigate the effects of rotation rate and Mach number upon aerodynamic force coefficients and wake structures. The simulation is carried out by solving the three-dimensional compressible Navier–Stokes equations. A free-stream Reynolds number (based on the free-stream velocity, density and viscosity coefficient and the diameter of the sphere) is set to be between 100 and 300, the free-stream Mach number is set to be between 0.2 and 2.0, and the dimensionless rotation rate defined by the ratio of the free-stream and surface velocities above the equator is set between 0.0 and 1.0. Thus, we have clarified the following points: (1) as free-stream Mach number increased, the increment of the lift coefficient due to rotation was reduced; (2) under subsonic conditions, the drag coefficient increased with increase of the rotation rate, whereas under supersonic conditions, the increment of the drag coefficient was reduced with increasing Mach number; and (3) the mode of the wake structure becomes low-Reynolds-number-like as the Mach number is increased.


2007 ◽  
Vol 594 ◽  
pp. 59-69 ◽  
Author(s):  
MATTHEW J. RINGUETTE ◽  
MINWEI WU ◽  
M. PINO MARTÍN

We demonstrate that data from direct numerical simulation of turbulent boundary layers at Mach 3 exhibit the same large-scale coherent structures that are found in supersonic and subsonic experiments, namely elongated, low-speed features in the logarithmic region and hairpin vortex packets. Contour plots of the streamwise mass flux show very long low-momentum structures in the logarithmic layer. These low-momentum features carry about one-third of the turbulent kinetic energy. Using Taylor's hypothesis, we find that these structures prevail and meander for very long streamwise distances. Structure lengths on the order of 100 boundary layer thicknesses are observed. Length scales obtained from correlations of the streamwise mass flux severely underpredict the extent of these structures, most likely because of their significant meandering in the spanwise direction. A hairpin-packet-finding algorithm is employed to determine the average packet properties, and we find that the Mach 3 packets are similar to those observed at subsonic conditions. A connection between the wall shear stress and hairpin packets is observed. Visualization of the instantaneous turbulence structure shows that groups of hairpin packets are frequently located above the long low-momentum structures. This finding is consistent with the very large-scale motion model of Kim & Adrian (1999).


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Xingtuan Yang ◽  
Nan Gui ◽  
Gongnan Xie ◽  
Jie Yan ◽  
Jiyuan Tu ◽  
...  

This study investigates the anisotropic characteristics of turbulent energy dissipation rate in a rotating jet flow via direct numerical simulation. The turbulent energy dissipation tensor, including its eigenvalues in the swirling flows with different rotating velocities, is analyzed to investigate the anisotropic characteristics of turbulence and dissipation. In addition, the probability density function of the eigenvalues of turbulence dissipation tensor is presented. The isotropic subrange of PDF always exists in swirling flows relevant to small-scale vortex structure. Thus, with remarkable large-scale vortex breakdown, the isotropic subrange of PDF is reduced in strongly swirling flows, and anisotropic energy dissipation is proven to exist in the core region of the vortex breakdown. More specifically, strong anisotropic turbulence dissipation occurs concentratively in the vortex breakdown region, whereas nearly isotropic turbulence dissipation occurs dispersively in the peripheral region of the strong swirling flows.


2018 ◽  
Vol 140 (11) ◽  
Author(s):  
Shanti Bhushan ◽  
D. Keith Walters ◽  
S. Muthu ◽  
Crystal L. Pasiliao

Efficacy of several large-scale flow parameters as transition onset markers are evaluated using direct numerical simulation (DNS) of boundary layer bypass transition. Preliminary results identify parameters (k2D/ν) and u′/U∞ to be a potentially reliable transition onset marker, and their critical values show less than 15% variation in the range of Re and turbulence intensity (TI). These parameters can be implemented into general-purpose physics-based Reynolds-averaged Navier–Stokes (RANS) models for engineering applications.


2002 ◽  
Vol 450 ◽  
pp. 377-407 ◽  
Author(s):  
S. A. STANLEY ◽  
S. SARKAR ◽  
J. P. MELLADO

Turbulent plane jets are prototypical free shear flows of practical interest in propulsion, combustion and environmental flows. While considerable experimental research has been performed on planar jets, very few computational studies exist. To the authors' knowledge, this is the first computational study of spatially evolving three-dimensional planar turbulent jets utilizing direct numerical simulation. Jet growth rates as well as the mean velocity, mean scalar and Reynolds stress profiles compare well with experimental data. Coherency spectra, vorticity visualization and autospectra are obtained to identify inferred structures. The development of the initial shear layer instability, as well as the evolution into the jet column mode downstream is captured well.The large- and small-scale anisotropies in the jet are discussed in detail. It is shown that, while the large scales in the flow field adjust slowly to variations in the local mean velocity gradients, the small scales adjust rapidly. Near the centreline of the jet, the small scales of turbulence are more isotropic. The mixing process is studied through analysis of the probability density functions of a passive scalar. Immediately after the rollup of vortical structures in the shear layers, the mixing process is dominated by large-scale engulfing of fluid. However, small-scale mixing dominates further downstream in the turbulent core of the self-similar region of the jet and a change from non-marching to marching PDFs is observed. Near the jet edges, the effects of large-scale engulfing of coflow fluid continue to influence the PDFs and non-marching type behaviour is observed.


2011 ◽  
Vol 679 ◽  
pp. 263-287 ◽  
Author(s):  
IVETTE RODRIGUEZ ◽  
RICARD BORELL ◽  
ORIOL LEHMKUHL ◽  
CARLOS D. PEREZ SEGARRA ◽  
ASSENSI OLIVA

The direct numerical simulation of the flow over a sphere is performed. The computations are carried out in the sub-critical regime at Re = 3700 (based on the free-stream velocity and the sphere diameter). A parallel unstructured symmetry-preserving formulation is used for simulating the flow. At this Reynolds number, flow separates laminarly near the equator of the sphere and transition to turbulence occurs in the separated shear layer. The vortices formed are shed at a large-scale frequency, St = 0.215, and at random azimuthal locations in the shear layer, giving a helical-like appearance to the wake. The main features of the flow including the power spectra of a set of selected monitoring probes at different positions in the wake of the sphere are described and discussed in detail. In addition, a large number of turbulence statistics are computed and compared with previous experimental and numerical data at comparable Reynolds numbers. Particular attention is devoted to assessing the prediction of the mean flow parameters, such as wall-pressure distribution, skin friction, drag coefficient, among others, in order to provide reliable data for testing and developing statistical turbulence models. In addition to the presented results, the capability of the methodology used on unstructured grids for accurately solving flows in complex geometries is also pointed out.


2011 ◽  
Vol 669 ◽  
pp. 397-431 ◽  
Author(s):  
JAE HWA LEE ◽  
HYUNG JIN SUNG ◽  
PER-ÅGE KROGSTAD

Direct numerical simulation (DNS) of a spatially developing turbulent boundary layer (TBL) over a wall roughened with regularly arrayed cubes was performed to investigate the effects of three-dimensional (3-D) surface elements on the properties of the TBL. The cubes were staggered in the downstream direction and periodically arranged in the streamwise and spanwise directions with pitches of px/k = 8 and pz/k = 2, where px and pz are the streamwise and spanwise spacings of the cubes and k is the roughness height. The Reynolds number based on the momentum thickness was varied in the range Reθ = 300−1300, and the roughness height was k = 1.5θin, where θin is the momentum thickness at the inlet, which corresponds to k/δ = 0.052–0.174 from the inlet to the outlet; δ is the boundary layer thickness. The characteristics of the TBL over the 3-D cube-roughened wall were compared with the results from a DNS of the TBL over a two-dimensional (2-D) rod-roughened wall. The introduction of cube roughness affected the turbulent Reynolds stresses not only in the roughness sublayer but also in the outer layer. The present instantaneous flow field and linear stochastic estimations of the conditional averaging showed that the streaky structures in the near-wall region and the low-momentum regions and hairpin packets in the outer layer are dominant features in the TBLs over the 2-D and 3-D rough walls and that these features are significantly affected by the surface roughness throughout the entire boundary layer. In the outer layer, however, it was shown that the large-scale structures over the 2-D and 3-D roughened walls have similar characteristics, which indicates that the dimensional difference between the surfaces with 2-D and 3-D roughness has a negligible effect on the turbulence statistics and coherent structures of the TBLs.


Sign in / Sign up

Export Citation Format

Share Document