Finite-amplitude equilibrium states in plane Couette flow

1997 ◽  
Vol 342 ◽  
pp. 159-177 ◽  
Author(s):  
A. CHERHABILI ◽  
U. EHRENSTEIN

A numerical bifurcation study in plane Couette flow is performed by computing successive finite-amplitude equilibrium states, solutions of the Navier–Stokes equations. Plane Couette flow being linearly stable for all Reynolds numbers, first two-dimensional equilibrium states are computed by extending nonlinear travelling waves in plane Poiseuille flow through the Poiseuille–Couette flow family to the plane Couette flow limit. The resulting nonlinear states are stationary with a spatially localized structure; they are subject to two-dimensional and three-dimensional secondary disturbances. Three-dimensional disturbances dominate the dynamics and three-dimensional stationary equilibrium states bifurcating at criticality on the two-dimensional equilibrium surface are computed. These nonlinear states, periodic in the spanwise direction and spatially localized in the streamwise direction, are computed for Reynolds numbers (based on half the velocity difference between the walls and channel half-width) close to 1000. While a possible relationship between the computed solutions and experimentally observed coherent structures in turbulent plane Couette flow has to be assessed, the present findings reinforce the idea that subcritical transition may be related to the existence of finite-amplitude states which are (unstable) fixed points in a dynamical systems formulation of the Navier–Stokes system.

2014 ◽  
Vol 758 ◽  
pp. 1-4 ◽  
Author(s):  
Bruno Eckhardt

AbstractMuch of our understanding of the transition to turbulence in flows without a linear instability came with the discovery and characterization of fully three-dimensional solutions to the Navier–Stokes equation. The first examples in plane Couette flow were periodic in both spanwise and streamwise directions, and could explain the transitions in small domains only. The presence of localized turbulent spots in larger domains, the spatiotemporal decoherence on larger scales and the ability to trigger turbulence with pointwise perturbations require solutions that are localized in both directions, like the one presented by Brand & Gibson (J. Fluid Mech., vol. 750, 2014, R3). They describe a steady solution of the Navier–Stokes equations and characterize in unprecedented detail, including an analytic computation of its localization properties. The study opens up new ways to describe localized turbulent patches.


2016 ◽  
Vol 799 ◽  
pp. 246-264 ◽  
Author(s):  
K. Seshasayanan ◽  
A. Alexakis

We study the linear stage of the dynamo instability of a turbulent two-dimensional flow with three components $(u(x,y,t),v(x,y,t),w(x,y,t))$ that is sometimes referred to as a 2.5-dimensional (2.5-D) flow. The flow evolves based on the two-dimensional Navier–Stokes equations in the presence of a large-scale drag force that leads to the steady state of a turbulent inverse cascade. These flows provide an approximation to very fast rotating flows often observed in nature. The low dimensionality of the system allows for the realization of a large number of numerical simulations and thus the investigation of a wide range of fluid Reynolds numbers $Re$, magnetic Reynolds numbers $Rm$ and forcing length scales. This allows for the examination of dynamo properties at different limits that cannot be achieved with three-dimensional simulations. We examine dynamos for both large and small magnetic Prandtl-number turbulent flows $Pm=Rm/Re$, close to and away from the dynamo onset, as well as dynamos in the presence of scale separation. In particular, we determine the properties of the dynamo onset as a function of $Re$ and the asymptotic behaviour in the large $Rm$ limit. We are thus able to give a complete description of the dynamo properties of these turbulent 2.5-D flows.


2000 ◽  
Vol 417 ◽  
pp. 103-126 ◽  
Author(s):  
D. R. BARNES ◽  
R. R. KERSWELL

New three-dimensional finite-amplitude travelling-wave solutions are found in rotating Hagen–Poiseuille flow (RHPF[Ωa, Ωp]) where fluid is driven by a constant pressure gradient along a pipe rotating axially at rate Ωa and at Ωp about a perpendicular diameter. For purely axial rotation (RHPF[Ωa, 0]), the two-dimensional helical waves found by Toplosky & Akylas (1988) are found to become unstable to three-dimensional travelling waves in a supercritical Hopf bifurcation. The addition of a perpendicular rotation at low axial rotation rates is found only to stabilize the system. In the absence of axial rotation, the two-dimensional steady flow solution in RHPF[0, Ωp] which connects smoothly to Hagen–Poiseuille flow as Ωp → 0 is found to be stable at all Reynolds numbers below 104. At high axial rotation rates, the superposition of a perpendicular rotation produces a ‘precessional’ instability which here is found to be a supercritical Hopf bifurcation leading directly to three-dimensional travelling waves. Owing to the supercritical nature of this primary bifurcation and the secondary bifurcation found in RHPF[Ωa, 0], no opportunity therefore exists to continue these three-dimensional finite-amplitude solutions in RHPF back to Hagen–Poiseuille flow. This then contrasts with the situation in narrow-gap Taylor–Couette flow where just such a connection exists to plane Couette flow.


1987 ◽  
Vol 178 ◽  
pp. 345-365 ◽  
Author(s):  
Philippe R. Spalart ◽  
Kyung-Soo Yang

The early three-dimensional stages of transition in the Blasius boundary layer are studied by numerical solution of the Navier-Stokes equations. A finite-amplitude two-dimensional wave and low-amplitude three-dimensional random disturbances are introduced. Rapid amplification of the three-dimensional components is observed and leads to transition. For intermediate amplitudes of the two-dimensional wave the breakdown is of subharmonic type, and the dominant spanwise wavenumber increases with the amplitude. For high amplitudes the energy of the fundamental mode is comparable to the energy of the subharmonic mode, but never dominates it; the breakdown is of mixed type. Visualizations, energy histories, and spectra are presented. The sensitivity of the results to various physical and numerical parameters is studied. The agreement with experimental and theoretical results is discussed.


1962 ◽  
Vol 13 (1) ◽  
pp. 91-100 ◽  
Author(s):  
A. P. Gallagher ◽  
A. McD. Mercer

The problem considered here is concerned with small disturbances of plane Couette flow. As is usual in such problems it is assumed that the disturbance velocities are sufficiently small to allow the Navier-Stokes equations to be linearized. There results a special case of the well-known Orr-Sommerfeld equation and this is solved by an exact method using a digital computer. The problem has previously been considered by several authors, mostly using approximate methods and their results have been compared where possible with those obtained here. It was possible to proceed to values of αR not in excess of 1000 (α being the wave-number of the disturbance and R the Reynolds number of the basic flow), and the results tend to confirm the belief that Couette flow is stable at all Reynolds numbers.


1976 ◽  
Vol 73 (1) ◽  
pp. 153-164 ◽  
Author(s):  
P.-A. Mackrodt

The linear stability of Hagen-Poiseuille flow (Poiseuille pipe flow) with superimposed rigid rotation against small three-dimensional disturbances is examined at finite and infinite axial Reynolds numbers. The neutral curve, which is obtained by numerical solution of the system of perturbation equations (derived from the Navier-Stokes equations), has been confirmed for finite axial Reynolds numbers by a few simple experiments. The results suggest that, at high axial Reynolds numbers, the amount of rotation required for destabilization could be small enough to have escaped notice in experiments on the transition to turbulence in (nominally) non-rotating pipe flow.


1995 ◽  
Vol 291 ◽  
pp. 369-392 ◽  
Author(s):  
Ronald D. Joslin

The spatial evolution of three-dimensional disturbances in an attachment-line boundary layer is computed by direct numerical simulation of the unsteady, incompressible Navier–Stokes equations. Disturbances are introduced into the boundary layer by harmonic sources that involve unsteady suction and blowing through the wall. Various harmonic-source generators are implemented on or near the attachment line, and the disturbance evolutions are compared. Previous two-dimensional simulation results and nonparallel theory are compared with the present results. The three-dimensional simulation results for disturbances with quasi-two-dimensional features indicate growth rates of only a few percent larger than pure two-dimensional results; however, the results are close enough to enable the use of the more computationally efficient, two-dimensional approach. However, true three-dimensional disturbances are more likely in practice and are more stable than two-dimensional disturbances. Disturbances generated off (but near) the attachment line spread both away from and toward the attachment line as they evolve. The evolution pattern is comparable to wave packets in flat-plate boundary-layer flows. Suction stabilizes the quasi-two-dimensional attachment-line instabilities, and blowing destabilizes these instabilities; these results qualitatively agree with the theory. Furthermore, suction stabilizes the disturbances that develop off the attachment line. Clearly, disturbances that are generated near the attachment line can supply energy to attachment-line instabilities, but suction can be used to stabilize these instabilities.


1985 ◽  
Vol 160 ◽  
pp. 281-295 ◽  
Author(s):  
F. A. Milinazzo ◽  
P. G. Saffman

Computations of two-dimensional solutions of the Navier–Stokes equations are carried out for finite-amplitude waves on steady unidirectional flow. Several cases are considered. The numerical method employs pseudospectral techniques in the streamwise direction and finite differences on a stretched grid in the transverse direction, with matching to asymptotic solutions when unbounded. Earlier results for Poiseuille flow in a channel are re-obtained, except that attention is drawn to the dependence of the minimum Reynolds number on the physical constraint of constant flux or constant pressure gradient. Attempts to calculate waves in Couette flow by continuation in the velocity of a channel wall fail. The asymptotic suction boundary layer is shown to possess finite-amplitude waves at Reynolds numbers orders of magnitude less than the critical Reynolds number for linear instability. Waves in the Blasius boundary layer and unsteady Rayleigh profile are calculated by employing the artifice of adding a body force to cancel the spatial or temporal growth. The results are verified by comparison with perturbation analysis in the vicinity of the linear-instability critical Reynolds numbers.


2009 ◽  
Vol 635 ◽  
pp. 1-26 ◽  
Author(s):  
NICOLAS PÉRINET ◽  
DAMIR JURIC ◽  
LAURETTE S. TUCKERMAN

We simulate numerically the full dynamics of Faraday waves in three dimensions for two incompressible and immiscible viscous fluids. The Navier–Stokes equations are solved using a finite-difference projection method coupled with a front-tracking method for the interface between the two fluids. The critical accelerations and wavenumbers, as well as the temporal behaviour at onset are compared with the results of the linear Floquet analysis of Kumar & Tuckerman (J. Fluid Mech., vol. 279, 1994, p. 49). The finite-amplitude results are compared with the experiments of Kityk et al (Phys. Rev. E, vol. 72, 2005, p. 036209). In particular, we reproduce the detailed spatio-temporal spectrum of both square and hexagonal patterns within experimental uncertainty. We present the first calculations of a three-dimensional velocity field arising from the Faraday instability for a hexagonal pattern as it varies over its oscillation period.


Sign in / Sign up

Export Citation Format

Share Document