scholarly journals Second-order Lagrangian description of tri-dimensional gravity wave interactions

2015 ◽  
Vol 772 ◽  
pp. 165-196 ◽  
Author(s):  
Frédéric Nouguier ◽  
Bertrand Chapron ◽  
Charles-Antoine Guérin

We revisit and supplement the description of gravity waves based on perturbation expansions in Lagrangian coordinates. A general analytical framework is developed to derive a second-order Lagrangian solution to the motion of arbitrary surface gravity wave fields in a compact and vectorial form. The result is shown to be consistent with the classical second-order Eulerian expansion by Longuet-Higgins (J. Fluid Mech., vol. 17, 1963, pp. 459–480) and is used to improve the original derivation by Pierson (1961 Models of random seas based on the Lagrangian equations of motion. Tech. Rep. New York University) for long-crested waves. As demonstrated, the Lagrangian perturbation expansion captures nonlinearities to a higher degree than does the corresponding Eulerian expansion of the same order. At the second order, it can account for complex nonlinear phenomena such as wave-front deformation that we can relate to the initial stage of horseshoe-pattern formation and the Benjamin–Feir modulational instability to shed new light on the origins of these mechanisms.

2005 ◽  
Vol 128 (3) ◽  
pp. 177-183 ◽  
Author(s):  
Sébastien Fouques ◽  
Harald E. Krogstad ◽  
Dag Myrhaug

Synthetic aperture radar (SAR) imaging of ocean waves involves both the geometry and the kinematics of the sea surface. However, the traditional linear wave theory fails to describe steep waves, which are likely to bring about specular reflection of the radar beam, and it may overestimate the surface fluid velocity that causes the so-called velocity bunching effect. Recently, the interest for a Lagrangian description of ocean gravity waves has increased. Such an approach considers the motion of individual labeled fluid particles and the free surface elevation is derived from the surface particles positions. The first order regular solution to the Lagrangian equations of motion for an inviscid and incompressible fluid is the so-called Gerstner wave. It shows realistic features such as sharper crests and broader troughs as the wave steepness increases. This paper proposes a second order irregular solution to these equations. The general features of the first and second order waves are described, and some statistical properties of various surface parameters such as the orbital velocity, slope, and mean curvature are studied.


JETP Letters ◽  
2013 ◽  
Vol 97 (8) ◽  
pp. 459-465 ◽  
Author(s):  
R. Bedard ◽  
S. Lukaschuk ◽  
S. Nazarenko

Author(s):  
Дамла Исидичи Демирель ◽  
Алессандро Яфрати ◽  
Александр Коробкин ◽  
Огуз Йилмаз

Двумерное импульсное течение жидкости изучается в рамках теории потенциального потока. Первоначально жидкость находится в состоянии покоя и удерживается на одной стороне вертикальной пластины. Она внезапно убирается и поток жидкости начинает течь под действием силы тяжести. Внимание уделяется особому поведению поля скоростей в нижней точке, где вертикальная свободная поверхность встречается с жестким дном. Линейная задача решается методом рядов Фурье. Решение внутренней области находится с помощью преобразования Меллина в нижней точке. Формирование струи наблюдается в нижней точке. Разрыв в верхней угловой точке исследуется с помощью Лагранжевых переменных. Для внешней задачи второго порядка используется метод декомпозиции области. Сравнение форм свободных поверхностей вблизи верхней угловой точки с решениями переднего и второго порядка показывает, что внешнее решение второго порядка имеет большее различие в вертикальной свободной поверхности, чем в горизонтальной части, по сравнению с решением ведущего порядка. Получена картина форм свободных поверхностей с использованием Лагранжевого описания для верхней части и Эйлерого описания для нижней части во втором порядке. Two dimensional impulsive flow of a fluid is studied within the potential flow theory. Initially the fluid is at rest and is held on one side of a vertical plate. The plate is withdrawn suddenly and gravity driven flow of the fluid starts. Attention is paid to the singular behaviour of the velocity field at the bottom point, where the vertical free surface meets the rigid bottom. The linear problem is solved by the Fourier series method. An inner region solution is found using Mellin transform at the bottom point. The jet formation is observed at the bottom point. Also the discontinuity at the upper corner point is dealt with Lagrangian variables. For the second order outer problem, domain decomposition method is used. Comparison of the shapes of the free surfaces near the upper corner point with leading and second order solutions shows that the second order outer solution outer makes a larger difference in the vertical free surface than in the horizontal portion, compared with leading order solution.The complete picture of the shapes of the free surfaces using Lagrangian description for the upper part and Eulerian description for the bottom part at the second order is obtained.


Sign in / Sign up

Export Citation Format

Share Document