scholarly journals The streamwise turbulence intensity in the intermediate layer of turbulent pipe flow

2015 ◽  
Vol 774 ◽  
pp. 324-341 ◽  
Author(s):  
J. C. Vassilicos ◽  
J.-P. Laval ◽  
J.-M. Foucaut ◽  
M. Stanislas

The spectral model of Perryet al. (J. Fluid Mech., vol. 165, 1986, pp. 163–199) predicts that the integral length scale varies very slowly with distance to the wall in the intermediate layer. The only way for the integral length scale’s variation to be more realistic while keeping with the Townsend–Perry attached eddy spectrum is to add a new wavenumber range to the model at wavenumbers smaller than that spectrum. This necessary addition can also account for the high-Reynolds-number outer peak of the turbulent kinetic energy in the intermediate layer. An analytic expression is obtained for this outer peak in agreement with extremely high-Reynolds-number data by Hultmarket al. (Phys. Rev. Lett., vol. 108, 2012, 094501;J. Fluid Mech., vol. 728, 2013, pp. 376–395). Townsend’s (The Structure of Turbulent Shear Flows, 1976, Cambridge University Press) production–dissipation balance and the finding of Dallaset al. (Phys. Rev. E, vol. 80, 2009, 046306) that, in the intermediate layer, the eddy turnover time scales with skin friction velocity and distance to the wall implies that the logarithmic derivative of the mean flow has an outer peak at the same location as the turbulent kinetic energy. This is seen in the data of Hultmarket al. (Phys. Rev. Lett., vol. 108, 2012, 094501;J. Fluid Mech., vol. 728, 2013, pp. 376–395). The same approach also predicts that the logarithmic derivative of the mean flow has a logarithmic decay at distances to the wall larger than the position of the outer peak. This qualitative prediction is also supported by the aforementioned data.

2019 ◽  
Vol 20 (5) ◽  
pp. 285-299 ◽  
Author(s):  
El-Sayed Zanoun ◽  
Christoph Egbers ◽  
Ramis Örlü ◽  
Tommaso Fiorini ◽  
Gabriele Bellani ◽  
...  

2015 ◽  
Vol 81 (826) ◽  
pp. 15-00091-15-00091 ◽  
Author(s):  
Yuki WADA ◽  
Noriyuki FURUICHII ◽  
Yoshiya TERAO ◽  
Yoshiyuki TSUJI

1994 ◽  
Vol 47 (8) ◽  
pp. 307-365 ◽  
Author(s):  
Mohamed Gad-el-Hak ◽  
Promode R. Bandyopadhyay

This paper reviews the state of the art of Reynolds number effects in wall-bounded shear-flow turbulence, with particular emphasis on the canonical zero-pressure-gradient boundary layer and two-dimensional channel flow problems. The Reynolds numbers encountered in many practical situations are typically orders of magnitude higher than those studied computationally or even experimentally. High-Reynolds number research facilities are expensive to build and operate and the few existing are heavily scheduled with mostly developmental work. For wind tunnels, additional complications due to compressibility effects are introduced at high speeds. Full computational simulation of high-Reynolds number flows is beyond the reach of current capabilities. Understanding of turbulence and modeling will continue to play vital roles in the computation of high-Reynolds number practical flows using the Reynolds-averaged Navier-Stokes equations. Since the existing knowledge base, accumulated mostly through physical as well as numerical experiments, is skewed towards the low Reynolds numbers, the key question in such high-Reynolds number modeling as well as in devising novel flow control strategies is: what are the Reynolds number effects on the mean and statistical turbulence quantities and on the organized motions? Since the mean flow review of Coles (1962), the coherent structures, in low-Reynolds number wall-bounded flows, have been reviewed several times. However, the Reynolds number effects on the higher-order statistical turbulence quantities and on the coherent structures have not been reviewed thus far, and there are some unresolved aspects of the effects on even the mean flow at very high Reynolds numbers. Furthermore, a considerable volume of experimental and full-simulation data have been accumulated since 1962. The present article aims at further assimilation of those data, pointing to obvious gaps in the present state of knowledge and highlighting the misunderstood as well as the ill-understood aspects of Reynolds number effects.


1993 ◽  
Vol 248 ◽  
pp. 493-511 ◽  
Author(s):  
Alexander A. Praskovsky ◽  
Evgeny B. Gledzer ◽  
Mikhail Yu. Karyakin ◽  
And Ye Zhou

The random sweeping decorrelation hypothesis was analysed theoretically and experimentally in terms of the higher-order velocity structure functions $D_{u_i}^{(m)}(r) = \left< [u_i^m(x + r) - u_i^m(x)]^2\right>$. Measurements in two high Reynolds number laboratory shear flows were used: in the return channel (Rλ ≈ 3.2 × 103) and in the mixing layer (Rλ ≈ 2.0 × 103) of a large wind tunnel. Two velocity components (in the direction of the mean flow, u1, and in the direction of the mean shear, u2) were processed for m = 1−4. The effect of using Taylor's hypothesis was estimated by a specially developed method, and found to be insignificant. It was found that all the higher-order structure functions scale, in the inertial subrange, as r2/3. Such a scaling has been argued as supporting evidence for the sweeping hypothesis. However, our experiments also established a strong correlation between energy- and inertial-range excitation. This finding leads to the conclusion that the sweeping decorrelation hypothesis cannot be exactly valid.The hypothesis of statistical independence of large- and small-scale excitation was directly checked with conditionally averaged moments of the velocity difference $\left< [u_i(x + r) - u_i(x)]^l\right>_{u_i^*}, l = 2-4$, at a fixed value of the large-scale parameter u*i. Clear dependence of the conditionally averaged moments on the level of averaging was found. In spite of a strong correlation between the energy-containing and the inertial-scale excitation, universality of the intrinsic structure of the inertial subrange was shown.


1995 ◽  
Vol 302 ◽  
pp. 117-139 ◽  
Author(s):  
V. Kumaran

The stability of the Hagen-Poiseuille flow of a Newtonian fluid in a tube of radius R surrounded by an incompressible viscoelastic medium of radius R < r < HR is analysed in the high Reynolds number regime. The dimensionless numbers that affect the fluid flow are the Reynolds number Re = (ρVR / η), the ratio of the viscosities of the wall and fluid ηr = (ηs/η), the ratio of radii H and the dimensionless velocity Γ = (ρV2/G)1/2. Here ρ is the density of the fluid, G is the coefficient of elasticity of the wall and Vis the maximum fluid velocity at the centre of the tube. In the high Reynolds number regime, an asymptotic expansion in the small parameter ε = (1/Re) is employed. In the leading approximation, the viscous effects are neglected and there is a balance between the inertial stresses in the fluid and the elastic stresses in the medium. There are multiple solutions for the leading-order growth rate do), all of which are imaginary, indicating that the fluctuations are neutrally stable, since there is no viscous dissipation of energy or transfer of energy from the mean flow to the fluctruations due to the Reynolds strees.There is an O(ε1/2) correction to the growth rate, s(1), due to the presence of a wall layer of thickness ε1/2R where the viscous stresses are O(ε1/2) smaller than the inertial stresses. An energy balance analysis indicates that the transfer of energy from the mean flow to the fluctuations due to the Reynolds stress in the wall layer is exactly cancelled by an opposite transfer of equal magnitude due to the deformation work done at the interface, and there is no net transfer from the mean flow to the fluctuations. Consequently, the fluctuations are stabilized by the viscous dissipation in the wall layer, and the real part of s(1) is negative. However, there are certain values of Γ and wavenumber k where s(l) = 0. At these points, the wail layer amplitude becomes zero because the tangential velocity boundary condition is identically satisfied by the inviscid flow solution. The real part of the O(ε) correction to the growth rate s(2) turns out to be negative at these points, indicating a small stabilizing effect due to the dissipation in the bulk of the fluid and the wall material. It is found that the minimum value of s(2) increases ∝ (H − 1)−2 for (H − 1) [Lt ] 1 (thickness of wall much less than the tube radius), and decreases ∝ (H−4 for H [Gt ] 1. The damping rate for the inviscid modes is smaller than that for the viscous wall and centre modes in a rigid tube, which have been determined previously using a singular perturbation analysis. Therefore, these are the most unstable modes in the flow through a flexible tube.


2012 ◽  
Vol 707 ◽  
pp. 575-584 ◽  
Author(s):  
Marcus Hultmark

AbstractA new theory for the streamwise turbulent fluctuations in fully developed pipe flow is proposed. The theory extends the similarities between the mean flow and the streamwise turbulence fluctuations, as observed in experimental high Reynolds number data, to also include the theoretical derivation. Connecting the derivation of the fluctuations to that of the mean velocity at finite Reynolds number as introduced by Wosnik, Castillo & George (J. Fluid Mech., vol. 421, 2000, pp. 115–145) can explain the logarithmic behaviour as well as the coefficient of the logarithm. The slope of the logarithm, for the fluctuations, depends on the increase of the fluctuations with Reynolds number, which is shown to agree very well with the experimental data. A mesolayer, similar to that introduced by Wosnik et al., exists for the fluctuations for $300\gt {y}^{+ } \gt 800$, which coincides with the mesolayer for the mean velocities. In the mesolayer, the flow is still affected by viscosity, which shows up as a decrease in the fluctuations.


2021 ◽  
Author(s):  
Alessandro Ceci ◽  
Sergio Pirozzoli ◽  
Joshua Romero ◽  
Massimiliano Fatica ◽  
Roberto Verzicco ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document