scholarly journals Transition to geostrophic convection: the role of the boundary conditions

2016 ◽  
Vol 799 ◽  
pp. 413-432 ◽  
Author(s):  
Rudie P. J. Kunnen ◽  
Rodolfo Ostilla-Mónico ◽  
Erwin P. van der Poel ◽  
Roberto Verzicco ◽  
Detlef Lohse

Rotating Rayleigh–Bénard convection, the flow in a rotating fluid layer heated from below and cooled from above, is used to analyse the transition to the geostrophic regime of thermal convection. In the geostrophic regime, which is of direct relevance to most geo- and astrophysical flows, the system is strongly rotating while maintaining a sufficiently large thermal driving to generate turbulence. We directly simulate the Navier–Stokes equations for two values of the thermal forcing, i.e. $Ra=10^{10}$ and $Ra=5\times 10^{10}$, at constant Prandtl number $Pr=1$, and vary the Ekman number in the range $Ek=1.3\times 10^{-7}$ to $Ek=2\times 10^{-6}$, which satisfies both requirements of supercriticality and strong rotation. We focus on the differences between the application of no-slip versus stress-free boundary conditions on the horizontal plates. The transition is found at roughly the same parameter values for both boundary conditions, i.e. at $Ek\approx 9\times 10^{-7}$ for $Ra=1\times 10^{10}$ and at $Ek\approx 3\times 10^{-7}$ for $Ra=5\times 10^{10}$. However, the transition is gradual and it does not exactly coincide in $Ek$ for different flow indicators. In particular, we report the characteristics of the transitions in the heat-transfer scaling laws, the boundary-layer thicknesses, the bulk/boundary-layer distribution of dissipations and the mean temperature gradient in the bulk. The flow phenomenology in the geostrophic regime evolves differently for no-slip and stress-free plates. For stress-free conditions, the formation of a large-scale barotropic vortex with associated inverse energy cascade is apparent. For no-slip plates, a turbulent state without large-scale coherent structures is found; the absence of large-scale structure formation is reflected in the energy transfer in the sense that the inverse cascade, present for stress-free boundary conditions, vanishes.

2003 ◽  
Vol 476 ◽  
pp. 335-343 ◽  
Author(s):  
J. ABSHAGEN ◽  
O. MEINCKE ◽  
G. PFISTER ◽  
K. A. CLIFFE ◽  
T. MULLIN

The effect of boundary conditions on the ‘critical dynamics’ at the onset of Taylor vortices is investigated in a combined numerical and experimental study. Numerical calculations of Navier–Stokes equations with ‘stress-free’ boundary conditions show that the Landau amplitude equation provides a good model of the transient dynamics. However, this rapidly breaks down when the ‘no-slip’ condition is approached. Apparent ‘critical’ behaviour observed in experiments is shown to have a surprising dependence on the length of the system.


Mathematics ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 461
Author(s):  
Kenta Oishi ◽  
Yoshihiro Shibata

In this paper, we consider the motion of incompressible magnetohydrodynamics (MHD) with resistivity in a domain bounded by a free surface. An electromagnetic field generated by some currents in an external domain keeps an MHD flow in a bounded domain. On the free surface, free boundary conditions for MHD flow and transmission conditions for electromagnetic fields are imposed. We proved the local well-posedness in the general setting of domains from a mathematical point of view. The solutions are obtained in an anisotropic space Hp1((0,T),Hq1)∩Lp((0,T),Hq3) for the velocity field and in an anisotropic space Hp1((0,T),Lq)∩Lp((0,T),Hq2) for the magnetic fields with 2<p<∞, N<q<∞ and 2/p+N/q<1. To prove our main result, we used the Lp-Lq maximal regularity theorem for the Stokes equations with free boundary conditions and for the magnetic field equations with transmission conditions, which have been obtained by Frolova and the second author.


1996 ◽  
Vol 310 ◽  
pp. 139-179 ◽  
Author(s):  
Robert M. Kerr

Using direct simulations of the incompressible Navier-Stokes equations with rigid upper and lower boundaries at fixed temperature and periodic sidewalls, scaling with respect to Rayleigh number is determined. At large aspect ratio (6:6:1) on meshes up to 288 × 288 × 96, a single scaling regime consistent with the properties of ‘hard’ convective turbulence is found for Pr = 0.7 between Ra = 5 × 104 and Ra = 2 × 107. The properties of this regime include Nu ∼ RaβT with βT = 0.28 ≈ 2/7, exponential temperature distributions in the centre of the cell, and velocity and temperature scales consistent with experimental measurements. Two velocity boundary-layer thicknesses are identified, one outside the thermal boundary layer that scales as Ra−1/7 and the other within it that scales as Ra−3/7. Large-scale shears are not observed; instead, strong local boundary-layer shears are observed in regions between incoming plumes and an outgoing network of buoyant sheets. At the highest Rayleigh number, there is a decade where the energy spectra are close to k−5/3 and temperature variance spectra are noticeably less steep. It is argued that taken together this is good evidence for ‘hard’ turbulence, even if individually each of these properties might have alternative explanations.


1991 ◽  
Vol 112 ◽  
pp. 326-326
Author(s):  
James A. Hughes ◽  
Calvin A. Kodres

ABSTRACTRecent, large scale, real estate development near the U.S. Naval Observatory has led to an investigation of the systematic atmospheric effects which heat from large buildings can cause. Results show that non-negligible slopes of the atmospheric layers can be induced which cause a surprisingly large anomalous refraction. The Navier-Stokes equations were numerically integrated using the appropriate boundary conditions and the resulting isopycnic tilts using the appropriate boundary conditions and the resulting isopycnic tilts charted. Rays were then essentially traced through the perturbed atmosphere to determine the magnitude of the anomalous refraction.


Author(s):  
Thomas Eiter ◽  
Mads Kyed ◽  
Yoshihiro Shibata

Abstract This paper is devoted to proving the existence of time-periodic solutions of one-phase or two-phase problems for the Navier–Stokes equations with small periodic external forces when the reference domain is close to a ball. Since our problems are formulated in time-dependent unknown domains, the problems are reduced to quasilinear systems of parabolic equations with non-homogeneous boundary conditions or transmission conditions in fixed domains by using the so-called Hanzawa transform. We separate solutions into the stationary part and the oscillatory part. The linearized equations for the stationary part have eigen-value 0, which is avoided by changing the equations with the help of the necessary conditions for the existence of solutions to the original problems. To treat the oscillatory part, we establish the maximal $$L_p$$ L p –$$L_q$$ L q regularity theorem of the periodic solutions for the system of parabolic equations with non-homogeneous boundary conditions or transmission conditions, which is obtained by the systematic use of $${\mathcal R}$$ R -solvers developed in Shibata (Diff Int Eqns 27(3–4):313–368, 2014; On the $${{\mathcal {R}}}$$ R -bounded solution operators in the study of free boundary problem for the Navier–Stokes equations. In: Shibata Y, Suzuki Y (eds) Springer proceedings in mathematics & statistics, vol. 183, Mathematical Fluid Dynamics, Present and Future, Tokyo, Japan, November 2014, pp 203–285, 2016; Comm Pure Appl Anal 17(4): 1681–1721. 10.3934/cpaa.2018081, 2018; $${{\mathcal {R}}}$$ R boundedness, maximal regularity and free boundary problems for the Navier Stokes equations, Preprint 1905.12900v1 [math.AP] 30 May 2019) to the resolvent problem for the linearized equations and the transference theorem obtained in Eiter et al. ($${{\mathcal {R}}}$$ R -solvers and their application to periodic $$L_p$$ L p estimates, Preprint in 2019) for the $$L_p$$ L p boundedness of operator-valued Fourier multipliers. These approaches are the novelty of this paper.


2002 ◽  
Vol 465 ◽  
pp. 99-130 ◽  
Author(s):  
A. V. OBABKO ◽  
K. W. CASSEL

Numerical solutions of the unsteady Navier–Stokes equations are considered for the flow induced by a thick-core vortex convecting along a surface in a two-dimensional incompressible flow. The presence of the vortex induces an adverse streamwise pressure gradient along the surface that leads to the formation of a secondary recirculation region followed by a narrow eruption of near-wall fluid in solutions of the unsteady boundary-layer equations. The locally thickening boundary layer in the vicinity of the eruption provokes an interaction between the viscous boundary layer and the outer inviscid flow. Numerical solutions of the Navier–Stokes equations show that the interaction occurs on two distinct streamwise length scales depending upon which of three Reynolds-number regimes is being considered. At high Reynolds numbers, the spike leads to a small-scale interaction; at moderate Reynolds numbers, the flow experiences a large-scale interaction followed by the small-scale interaction due to the spike; at low Reynolds numbers, large-scale interaction occurs, but there is no spike or subsequent small-scale interaction. The large-scale interaction is found to play an essential role in determining the overall evolution of unsteady separation in the moderate-Reynolds-number regime; it accelerates the spike formation process and leads to formation of secondary recirculation regions, splitting of the primary recirculation region into multiple corotating eddies and ejections of near-wall vorticity. These eddies later merge prior to being lifted away from the surface and causing detachment of the thick-core vortex.


2013 ◽  
Vol 733 ◽  
pp. 245-267 ◽  
Author(s):  
A. Karimi ◽  
A. M. Ardekani

AbstractBioconvection is an important phenomenon in aquatic environments, affecting the spatial distribution of motile micro-organisms and enhancing mixing within the fluid. However, stratification arising from thermal or solutal gradients can play a pivotal role in suppressing the bioconvective flows, leading to the aggregation of micro-organisms and growth of their patchiness. We investigate the combined effects by considering gyrotactic motility where the up-swimming cells are directed by the balance of the viscous and gravitational torques. To study this system, we employ a continuum model consisting of Navier–Stokes equations with the Boussinesq approximation coupled with two conservation equations for the concentration of cells and stratification agent. We present a linear stability analysis to determine the onset of bioconvection for different flow parameters. Also, using large-scale numerical simulations, we explore different regimes of the flow by varying the corresponding boundary conditions and dimensionless variables such as Rayleigh number and Lewis number ($\mathit{Le}$) and we show that the cell distribution can be characterized using the ratio of the buoyancy forces as the determinant parameter when $\mathit{Le}\lt 1$ and the boundaries are insulated. But, in thermally stratified fluids corresponding to $\mathit{Le}\gt 1$, temperature gradients are demonstrated to have little impact on the bioconvective plumes provided that the walls are thermally insulated. In addition, we analyse the dynamical behaviour of the system in the case of persistent pycnoclines corresponding to constant salinity boundary conditions and we discuss the associated inhibition threshold of bioconvection in the light of the stability of linearized solutions.


Sign in / Sign up

Export Citation Format

Share Document