Direct numerical simulations of a high Karlovitz number laboratory premixed jet flame – an analysis of flame stretch and flame thickening

2017 ◽  
Vol 815 ◽  
pp. 511-536 ◽  
Author(s):  
Haiou Wang ◽  
Evatt R. Hawkes ◽  
Jacqueline H. Chen ◽  
Bo Zhou ◽  
Zhongshan Li ◽  
...  

This article reports an analysis of the first detailed chemistry direct numerical simulation (DNS) of a high Karlovitz number laboratory premixed flame. The DNS results are first compared with those from laser-based diagnostics with good agreement. The subsequent analysis focuses on a detailed investigation of the flame area, its local thickness and their rates of change in isosurface following reference frames, quantities that are intimately connected. The net flame stretch is demonstrated to be a small residual of large competing terms: the positive tangential strain term and the negative curvature stretch term. The latter is found to be driven by flame speed–curvature correlations and dominated in net by low probability highly curved regions. Flame thickening is demonstrated to be substantial on average, while local regions of flame thinning are also observed. The rate of change of the flame thickness (as measured by the scalar gradient magnitude) is demonstrated, analogously to flame stretch, to be a competition between straining tending to increase gradients and flame speed variations in the normal direction tending to decrease them. The flame stretch and flame thickness analyses are connected by the observation that high positive tangential strain rate regions generally correspond with low curvature regions; these regions tend to be positively stretched in net and are relatively thinner compared with other regions. High curvature magnitude regions (both positive and negative) generally correspond with lower tangential strain; these regions are in net negatively stretched and thickened substantially.

Author(s):  
Long Liang ◽  
Chulhwa Jung ◽  
Song-Charng Kong ◽  
Rolf D. Reitz

An efficient semi-implicit numerical method is developed for solving the detailed chemical kinetic source terms in I.C. engine simulations. The detailed chemistry system is a group of coupled extremely stiff O.D.E.s, which presents a very stringent timestep limitation when solved by standard explicit methods, and is computationally expensive when solved by iterative implicit methods. The present numerical solver uses a stiffly-stable noniterative semi-implicit method, in which the numerical solution to the stiff O.D.E.s never blows up for arbitrary large timestep. The formulation of numerical integration exploits the physical requirement that the species density and specific internal energy in the computational cells must be nonnegative, so that the Lipschitz timestep constraint is not present [1,2], and the computation timestep can be orders of magnitude larger than that possible in standard explicit methods and can be formulated to be of high formal order of accuracy. The solver exploits the characteristics of the stiffness of the O.D.E.s by using a sequential sort algorithm that ranks an approximation to the dominant eigenvalues of the system to achieve maximum accuracy. Subcycling within the chemistry solver routine is applied for each computational cell in engine simulations, where the subcycle timestep is dynamically determined by monitoring the rate of change of concentration of key species which have short characteristic time scales and are also important to the chemical heat release. The chemistry solver is applied in the KIVA-3V code to diesel engine simulations. Results are compared with those using the CHEMKIN package which uses the VODE implicit solver. Very good agreement was achieved for a wide range of engine operating conditions, and 40∼70% CPU time savings were achieved by the present solver compared to CHEMKIN.


2019 ◽  
pp. 146808741987771 ◽  
Author(s):  
Behdad Afkhami ◽  
Yanyu Wang ◽  
Scott A Miers ◽  
Jeffrey D Naber

The current research experimentally studied flame speed and stretch under engine in-cylinder conditions. A direct-injection, spark-ignition, and optically accessible engine was utilized to image the flame propagation, and E10 was selected as the fuel. Also, three fuel–air mixtures (stoichiometric, lean, and rich) were examined. The flame front was located by processing high-speed images. This study introduces a novel approach for calculation of equivalent spherical flame radius for analysis of flame speed and stretch. Flame front propagation analysis showed that during the flame propagation period, the stretch decreased until the flame front touched the piston surface. This was a common trend for stoichiometric, lean, and rich mixtures, which occurred because the flame radius was the dominant factor in the stretch calculation. In addition, the rich fuel–air mixture showed a lower flame stretch compared to stoichiometric or lean mixture. This was the result of a lower Markstein number for the rich fuel–air mixture. To study the sensitivity of different fuel–air mixtures to the flame stretch, the trajectory of the flame centroid was tracked until the flame front touched the piston surface. The results showed that the end centroid for the lean mixture deviated from the start point more than those of the rich and stoichiometric mixtures because the lean mixture had a higher flame stretch and lower flame speed. Furthermore, comparing the flame stretch at three different engine speeds revealed that increasing the engine speed increased the flame stretch, especially during the early flame development period. According to previous studies which discussed flame stretch as a flame extinguishment mechanism, the probability of flame extinction is higher when the engine speed is higher. Also, uncertainty analysis was conducted to determine the effect of camera setting on the flame stretch. Results showed that a maximum relative uncertainty of 4.5% occurred during the early flame development.


Author(s):  
Thomas Kick ◽  
Trupti Kathrotia ◽  
Marina Braun-Unkhoff ◽  
Uwe Riedel

The present work reports on measurements of burning velocities of synthetic fuel air mixtures exploiting the cone-angle method, as part of the EU project ALFA-BIRD. The GtL (Gas-to-Liquid)-air mixtures — (i) 100% GtL and (ii) GtL+20% hexanol, respectively — were studied at atmospheric pressure, with values of the equivalence ratio φ ranging between φ ∼ 1.0 and φ ∼ 1.3, at preheat temperatures To = 423 K (GtL+20% hexanol) as well as To = 473 K (for 100% GtL and GtL+20% hexanol). A comparison between experimentally obtained burning velocities and predicted values of laminar flame speed is presented, too. In general, good agreement was found between predicted and measured data for the range of conditions considered in the present study. The predictive capability of the detailed reaction model consisting of 3479 reactions involving 490 species will be discussed focusing on the laminar flame speed and the combustion of the components (n-decane, iso-octane, and 1-hexanol) of the surrogate used.


2014 ◽  
Vol 57 (9) ◽  
pp. 1750-1760 ◽  
Author(s):  
Chao Han ◽  
Pei Zhang ◽  
TaoHong Ye ◽  
YiLiang Chen

2013 ◽  
Author(s):  
Pierre Brequigny ◽  
Christine Mounaïm-Rousselle ◽  
Fabien Halter ◽  
Bruno Moreau ◽  
Thomas Dubois

This paper describes the measurement of flame speed by means of the flat flame formed downstream of a cooled porous plate through which flows a mixture of propane and air. A flat flame has been stabilized over a wide range of mixture ratios and with flame speeds ranging between 4 and 38 cm/s; the adiabatic flame speeds are obtained by extrapolation. Good agreement is obtained with the results of other investigators as to the effect of temperature on flame speed. Cellular flames are observed in rich, weak and stoichiometric mixtures; cell size varies both with mixture ratio and heat-extraction rate.


Author(s):  
Andrew Marshall ◽  
Julia Lundrigan ◽  
Prabhakar Venkateswaran ◽  
Jerry Seitzman ◽  
Tim Lieuwen

Fuel composition has a strong influence on the turbulent flame speed, even at very high turbulence intensities. An important implication of this result is that the turbulent flame speed cannot be extrapolated from one fuel to the next using only the laminar flame speed and turbulence intensity as scaling variables. This paper presents curvature and tangential strain rate statistics of premixed turbulent flames for high hydrogen content fuels. Global (unconditioned) stretch statistics are presented as well as measurements conditioned on the leading points of the flame front. These measurements are motivated by previous experimental and theoretical work that suggests the turbulent flame speed is controlled by the flame front characteristics at these points. The data were acquired with high speed particle image velocimetry (PIV) in a low swirl burner (LSB). We attained measurements for several H2:CO mixtures over a range of mean flow velocities and turbulence intensities. The results show that fuel composition has a systematic, yet weak effect on curvatures and tangential strain rates at the leading points. Instead, stretch statistics at the leading points are more strongly influenced by mean flow velocity and turbulence level. It has been argued that the increased turbulent flame speeds seen with increasing hydrogen content are the result of increasing flame stretch rates, and therefore SL,max values, at the flame leading points. However, the differences observed with changing fuel compositions are not significant enough to support this hypothesis. Additional analysis is needed to understand the physical mechanisms through which the turbulent flame speed is altered by fuel composition effects.


PAMM ◽  
2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Tommy Starick ◽  
David O. Lignell ◽  
Heiko Schmidt

Sign in / Sign up

Export Citation Format

Share Document