Characterization of superhydrophobic surfaces for drag reduction in turbulent flow

2018 ◽  
Vol 845 ◽  
pp. 560-580 ◽  
Author(s):  
James W. Gose ◽  
Kevin Golovin ◽  
Mathew Boban ◽  
Joseph M. Mabry ◽  
Anish Tuteja ◽  
...  

A significant amount of the fuel consumed by marine vehicles is expended to overcome skin-friction drag resulting from turbulent boundary layer flows. Hence, a substantial reduction in this frictional drag would notably reduce cost and environmental impact. Superhydrophobic surfaces (SHSs), which entrap a layer of air underwater, have shown promise in reducing drag in small-scale applications and/or in laminar flow conditions. Recently, the efficacy of these surfaces in reducing drag resulting from turbulent flows has been shown. In this work we examine four different, mechanically durable, large-scale SHSs. When evaluated in fully developed turbulent flow, in the height-based Reynolds number range of 10 000 to 30 000, significant drag reduction was observed on some of the surfaces, dependent on their exact morphology. We then discuss how neither the roughness of the SHSs, nor the conventional contact angle goniometry method of evaluating the non-wettability of SHSs at ambient pressure, can predict their drag reduction under turbulent flow conditions. Instead, we propose a new characterization parameter, based on the contact angle hysteresis at higher pressure, which aids in the rational design of randomly rough, friction-reducing SHSs. Overall, we find that both the contact angle hysteresis at higher pressure, and the non-dimensionalized surface roughness, must be minimized to achieve meaningful turbulent drag reduction. Further, we show that even SHSs that are considered hydrodynamically smooth can cause significant drag increase if these two parameters are not sufficiently minimized.

2012 ◽  
Vol 291 (2) ◽  
pp. 427-435 ◽  
Author(s):  
Mohammad Amin Sarshar ◽  
Christopher Swarctz ◽  
Scott Hunter ◽  
John Simpson ◽  
Chang-Hwan Choi

Author(s):  
Mohammad Amin Sarshar ◽  
Christopher Swarctz ◽  
Scott Hunter ◽  
John Simpson ◽  
Chang-Hwan Choi

In this paper, the iceophobic properties of superhydrophobic surfaces are compared to those of uncoated aluminum and steel plate surfaces as investigated under dynamic flow conditions by using a closed loop low-temperature wind tunnel. Superhydrophobic surfaces were prepared at the Oak Ridge National Laboratory by coating aluminum and steel plates with nano-structured hydrophobic particles. The contact angle and contact angle hysteresis measured for these surfaces ranged from 165–170° and 1–8°, respectively. The superhydrophobic plates along with uncoated control ones were exposed to an air flow of 12 m/s and 20°F with micron-sized water droplets in the icing wind tunnel and the ice formation and accretion were probed by using high speed cameras for 90 seconds. Results show that the developed superhydrophobic coatings significantly delay the ice formation and accretion even with the impingement of accelerated super-cooled water droplets, but there is a time scale for this phenomenon which has a clear relation with contact angle hysteresis of the samples. Among the different superhydrophobic coating samples, the plate having the lowest contact angle hysteresis showed the most pronounced iceophobic effects, while the correlation between static contact angles and the iceophobic effects was not evident. The results suggest that the key parameter for designing iceophobic surfaces is to retain a low contact angle hysteresis, rather than to have only a low contact angle, which can result in more efficient anti-icing properties in dynamic flow conditions.


Author(s):  
Elias Aljallis ◽  
Mohammad Amin Sarshar ◽  
Raju Datla ◽  
Scott Hunter ◽  
John Simpson ◽  
...  

In this paper, we report the characterization of large-scale superhydrophobic surfaces for hydrodynamic drag reduction in boundary layer flows using a high-speed towing tank system. For making superhydrophobic surfaces, flat aluminum plates (4 ft × 2 ft × 3/8 in, with sharpened leading/trailing edges) were prepared and coated with nano-structured hydrophobic particles. The static and dynamic contact angle measurements indicate that the coated surfaces correspond to a de-wetting (Cassie) state with air retained on the nano-structured surfaces. Hydrodynamic drag of the large-area superhydrophobic plates was measured to cover turbulent flows (water flow speeds up to 30 ft/s, Reynolds number in the range of 105−107) and compared with that of an uncoated bare aluminum control plate. Results show that an acceptable drag reduction was obtained up to ∼30% in the early stage of the turbulent regime which is due to reduced shear forces on the plates because of the lubricating air layer on the surface. However, in a fully developed turbulent flow regime, an increase in drag was measured which is mainly attributed to the amplified surface roughness due to the protrusions of air bubbles formed on the surface. Meanwhile, a qualitative observation suggests that the air bubbles are prone to be depleted during several runs of the high shear-rate flows, as revealed by streak lines of depleted air bubbles. This suggests that the superhydrophobic coating is unstable in maintaining the de-wetted state under dynamic flow conditions and that the increased drag results from the inherent surface roughness of the coating layer where the de-wetted state collapses to a wetted (Wenzel) state due to the depletion of air bubbles. However, it was also observed that the air bubbles would reform on the surface, with the same properties as a dry surface immersed in water, while the plate was kept statically immersed in water for 12 hours, suggesting that the superhydrophobic coating retains static stability for a de-wetted state. The experimental results illustrate that drag reduction is not solely dependent on the superhydrophobicity of a surface (e.g., contact angle and air fraction), but the morphology and stability of the surface air layer are also critical for the design and use of superhydrophobic surfaces for large-scale hydrodynamic drag reduction, especially in turbulent flow regimes.


2014 ◽  
Vol 747 ◽  
pp. 186-217 ◽  
Author(s):  
S. Türk ◽  
G. Daschiel ◽  
A. Stroh ◽  
Y. Hasegawa ◽  
B. Frohnapfel

AbstractWe investigate the effects of superhydrophobic surfaces (SHS) carrying streamwise grooves on the flow dynamics and the resultant drag reduction in a fully developed turbulent channel flow. The SHS is modelled as a flat boundary with alternating no-slip and free-slip conditions, and a series of direct numerical simulations is performed with systematically changing the spanwise periodicity of the streamwise grooves. In all computations, a constant pressure gradient condition is employed, so that the drag reduction effect is manifested by an increase of the bulk mean velocity. To capture the flow properties that are induced by the non-homogeneous boundary conditions the instantaneous turbulent flow is decomposed into the spatial-mean, coherent and random components. It is observed that the alternating no-slip and free-slip boundary conditions lead to the generation of Prandtl’s second kind of secondary flow characterized by coherent streamwise vortices. A mathematical relationship between the bulk mean velocity and different dynamical contributions, i.e. the effective slip length and additional turbulent losses over slip surfaces, reveals that the increase of the bulk mean velocity is mainly governed by the effective slip length. For a small spanwise periodicity of the streamwise grooves, the effective slip length in a turbulent flow agrees well with the analytical solution for laminar flows. Once the spanwise width of the free-slip area becomes larger than approximately 20 wall units, however, the effective slip length is significantly reduced from the laminar value due to the mixing caused by the underlying turbulence and secondary flow. Based on these results, we develop a simple model that allows estimating the gain due to a SHS in turbulent flows at practically high Reynolds numbers.


2008 ◽  
Vol 112 (30) ◽  
pp. 11403-11407 ◽  
Author(s):  
Yonghao Xiu ◽  
Lingbo Zhu ◽  
Dennis W. Hess ◽  
C. P. Wong

2012 ◽  
Vol 706-709 ◽  
pp. 2874-2879 ◽  
Author(s):  
R. Jafari ◽  
Masoud Farzaneh

Superhydrophobic surfaces were prepared using a very simple and low-cost method by spray coating. A high static water contact angle of about 154° was obtained by deposition of stearic acid on an aluminium alloy. However, this coating demonstrated a high contact angle hysteresis (~ 30º). On the other hand, superhydrophobic surfaces with a static contact angle of about 162º and 158º, and a low contact angle hysteresis of about 3º and 5º were respectively obtained by incorporating nanoparticles of SiO2and CaCO3in stearic acid. The excellent resulting hydrophobicity is attributed to the synergistic effects of micro/nanoroughness and low surface energy. A study of the wettability of these surfaces at temperatures ranging from 20 to-10 °C showed that the superhydrophobic surface becomes rather hydrophobic at supercooled temperatures.


Author(s):  
Mercy Dicuangco ◽  
Susmita Dash ◽  
Justin A. Weibel ◽  
Suresh V. Garimella

The ability to control the size, shape, and location of particulate deposits is important in patterning, nanowire growth, sorting biological samples, and many other industrial and scientific applications. It is therefore of interest to understand the fundamentals of particle deposition via droplet evaporation. In the present study, we experimentally probe the assembly of particles on superhydrophobic surfaces by the evaporation of sessile water droplets containing suspended latex particles. Superhydrophobic surfaces are known to result in a significant decrease in the solid-liquid contact area of a droplet placed on such a substrate, thereby increasing the droplet contact angle and reducing the contact angle hysteresis. We conduct experiments on superhydrophobic surfaces of different geometric parameters that are maintained at different surface temperatures. The transient droplet shape and wetting behavior during evaporation are analyzed as a function of substrate temperature as well as surface morphology. During the evaporation process, the droplet exhibits a constant contact radius mode, a constant contact angle mode, or a mixed mode in which the contact angle and contact radius change simultaneously. The evaporation time of a droplet can be significantly reduced with substrate heating as compared to room-temperature evaporation. To describe the spatial distribution of the particle residues left on the surfaces, qualitative and quantitative evaluations of the deposits are presented. The results show that droplet evaporation on superhydrophobic surfaces, driven by mass diffusion under isothermal conditions or by substrate heating, suppresses particle deposition at the contact line. This preempts the so-called coffee-ring and allows active control of the location of particle deposition.


2019 ◽  
Vol 31 (4) ◽  
pp. 042107 ◽  
Author(s):  
Anoop Rajappan ◽  
Kevin Golovin ◽  
Brian Tobelmann ◽  
Venkata Pillutla ◽  
Abhijeet ◽  
...  

Author(s):  
Ling Zhen ◽  
Claudia del Carmen Gutierrez-Torres

The question of “where and how the turbulent drag arises” is one of the most fundamental problems unsolved in fluid mechanics. However, the physical mechanism responsible for the friction drag reduction is still not well understood. Over decades, it is found that the turbulence production and self-containment in a boundary layer are organized phenomena and not random processes as the turbulence looks like. The further study in the boundary layer should be able to help us know more about the mechanisms of drag reduction. The wavelet-based vector multi-resolution technique was proposed and applied to the two dimensional PIV velocities for identifying the multi-scale turbulent structures. The intermediate and small scale vortices embedded within the large-scale vortices were separated and visualized. By analyzing the fluctuating velocities at different scales, coherent eddy structures were obtained and this help us obtain the important information on the multi-scale flow structures in the turbulent flow. By comparing the eddy structures in different operating conditions, the mechanism to explain the drag reduction caused by micro bubbles in turbulent flow was proposed.


2011 ◽  
Vol 2 ◽  
pp. 66-84 ◽  
Author(s):  
Bharat Bhushan

The emerging field of biomimetics allows one to mimic biology or nature to develop nanomaterials, nanodevices, and processes which provide desirable properties. Hierarchical structures with dimensions of features ranging from the macroscale to the nanoscale are extremely common in nature and possess properties of interest. There are a large number of objects including bacteria, plants, land and aquatic animals, and seashells with properties of commercial interest. Certain plant leaves, such as lotus (Nelumbo nucifera) leaves, are known to be superhydrophobic and self-cleaning due to the hierarchical surface roughness and presence of a wax layer. In addition to a self-cleaning effect, these surfaces with a high contact angle and low contact angle hysteresis also exhibit low adhesion and drag reduction for fluid flow. An aquatic animal, such as a shark, is another model from nature for the reduction of drag in fluid flow. The artificial surfaces inspired from the shark skin and lotus leaf have been created, and in this article the influence of structure on drag reduction efficiency is reviewed. Biomimetic-inspired oleophobic surfaces can be used to prevent contamination of the underwater parts of ships by biological and organic contaminants, including oil. The article also reviews the wetting behavior of oil droplets on various superoleophobic surfaces created in the lab.


Sign in / Sign up

Export Citation Format

Share Document