scholarly journals A Simple Method to Create Superhydrophobic Aluminium Surfaces

2012 ◽  
Vol 706-709 ◽  
pp. 2874-2879 ◽  
Author(s):  
R. Jafari ◽  
Masoud Farzaneh

Superhydrophobic surfaces were prepared using a very simple and low-cost method by spray coating. A high static water contact angle of about 154° was obtained by deposition of stearic acid on an aluminium alloy. However, this coating demonstrated a high contact angle hysteresis (~ 30º). On the other hand, superhydrophobic surfaces with a static contact angle of about 162º and 158º, and a low contact angle hysteresis of about 3º and 5º were respectively obtained by incorporating nanoparticles of SiO2and CaCO3in stearic acid. The excellent resulting hydrophobicity is attributed to the synergistic effects of micro/nanoroughness and low surface energy. A study of the wettability of these surfaces at temperatures ranging from 20 to-10 °C showed that the superhydrophobic surface becomes rather hydrophobic at supercooled temperatures.

Coatings ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 398 ◽  
Author(s):  
Chongwei Du ◽  
Xiaoyan He ◽  
Feng Tian ◽  
Xiuqin Bai ◽  
Chengqing Yuan

Corrosion seriously limits the long-term application of Q235 carbon steel. Herein, a simple fabrication method was used to fabricate superhydrophobic surfaces on Q235 carbon steel for anticorrosion application. The combination of structure and the grafted low-surface-energy material contributed to the formation of superhydrophobic steel surfaces, which exhibited a water contact angle of 161.6° and a contact angle hysteresis of 0.8°. Meanwhile, the as-prepared superhydrophobic surface showed repellent toward different solutions with pH ranging from 1 to 14, presenting excellent chemical stability. Moreover, the acid corrosive liquid (HCl solution with pH of 1) maintained sphere-like shape on the as-prepared superhydrophobic surface at room temperature, indicating superior corrosion resistance. This work provides a simple method to fabricate superhydrophobic steel surfaces with chemical stability and corrosion resistance.


2021 ◽  
Vol 21 (12) ◽  
pp. 6212-6216
Author(s):  
Yeon-Ah Park ◽  
Young-Geun Ha

Studies on fabricating robust superhydrophobic surfaces by a low-cost method have been rare, despite the recent demand for nature-inspired superhydrophobic surfaces including self-healing ability in various industrial applications. Herein, we propose a fabrication method for self-healable, robust superhydrophobic nanocomposite films by facile solution-processed spray coating and UV curing. The components of the coating solution include functionalized hydrophobic silica nanoparticles for producing high roughness hierarchical textured structures with low surface energy, and UV-crosslinkable v-POSS and bi-thiol hydrocarbon molecules to improve the film stability. As a result of the synergetic effect of the hydrophobic nanoparticles and UV-crosslinked polymeric compounds, the spray-coated and UV-cured nanocomposite films possess excellent superhydrophobicity (water contact angles > 150º) and high stability, in addition to self-healing abilities.


2012 ◽  
Vol 463-464 ◽  
pp. 349-353 ◽  
Author(s):  
Feng Guo ◽  
Xun Jia Su ◽  
Gen Liang Hou ◽  
Zhao Hui Liu ◽  
Hai Peng Jia

Superhydrophobic surfaces have been a hot topic during the last decade owing to their great potential in widely application. In this work, we report on a facile and low-cost two-step method to fabricate superhydrophobic surface on steel substrates. The as-obtained surface shows an interesting hierarchical structure composed of microscale flowerlike cluster and nanoscale particles, which is similar to that of a lotus leaf. After further modification with stearic acid, the resultant surface exhibits remarkable superhydrophobic properties. The water contact angle is as high as 155°. Moreover, the superhydrophobic properties are long-term stable.


2012 ◽  
Vol 200 ◽  
pp. 190-193 ◽  
Author(s):  
Ruo Mei Wu ◽  
Shu Quan Liang ◽  
Hong Chen ◽  
An Qiang Pan ◽  
Hai Yun Jiang ◽  
...  

A novel and stable super-hydrophobic film was prepared by stearic acid (C18H36O2), which was chemically adsorbed onto the anodized aluminum surface. The maximum static water contact angle (WCA) of the super-hydrophobic surface was 157.5º ± 2.0º and the contact angle hysteresis was less than 3º. The superhydrophobic property is attributed to the micro-nanoporous surface morphology and stearic acid. The pore size on the surface of anodic aluminum oxide is an important factor for controlling the superhydrophobic adhesiveness. The superhydrophobic surface is a factor to reduce device-associated infection and can be used in metal packaging practice.


Author(s):  
Mohammad Amin Sarshar ◽  
Christopher Swarctz ◽  
Scott Hunter ◽  
John Simpson ◽  
Chang-Hwan Choi

In this paper, the iceophobic properties of superhydrophobic surfaces are compared to those of uncoated aluminum and steel plate surfaces as investigated under dynamic flow conditions by using a closed loop low-temperature wind tunnel. Superhydrophobic surfaces were prepared at the Oak Ridge National Laboratory by coating aluminum and steel plates with nano-structured hydrophobic particles. The contact angle and contact angle hysteresis measured for these surfaces ranged from 165–170° and 1–8°, respectively. The superhydrophobic plates along with uncoated control ones were exposed to an air flow of 12 m/s and 20°F with micron-sized water droplets in the icing wind tunnel and the ice formation and accretion were probed by using high speed cameras for 90 seconds. Results show that the developed superhydrophobic coatings significantly delay the ice formation and accretion even with the impingement of accelerated super-cooled water droplets, but there is a time scale for this phenomenon which has a clear relation with contact angle hysteresis of the samples. Among the different superhydrophobic coating samples, the plate having the lowest contact angle hysteresis showed the most pronounced iceophobic effects, while the correlation between static contact angles and the iceophobic effects was not evident. The results suggest that the key parameter for designing iceophobic surfaces is to retain a low contact angle hysteresis, rather than to have only a low contact angle, which can result in more efficient anti-icing properties in dynamic flow conditions.


Author(s):  
Bharat Bhushan ◽  
Yong Chae Jung ◽  
Kerstin Koch

Superhydrophobic surfaces exhibit extreme water-repellent properties. These surfaces with high contact angle and low contact angle hysteresis also exhibit a self-cleaning effect and low drag for fluid flow. Certain plant leaves, such as lotus leaves, are known to be superhydrophobic and self-cleaning due to the hierarchical roughness of their leaf surfaces. The self-cleaning phenomenon is widely known as the ‘lotus effect’. Superhydrophobic and self-cleaning surfaces can be produced by using roughness combined with hydrophobic coatings. In this paper, the effect of micro- and nanopatterned polymers on hydrophobicity is reviewed. Silicon surfaces patterned with pillars and deposited with a hydrophobic coating were studied to demonstrate how the effects of pitch value, droplet size and impact velocity influence the transition from a composite state to a wetted state. In order to fabricate hierarchical structures, a low-cost and flexible technique that involves replication of microstructures and self-assembly of hydrophobic waxes is described. The influence of micro-, nano- and hierarchical structures on superhydrophobicity is discussed by the investigation of static contact angle, contact angle hysteresis, droplet evaporation and propensity for air pocket formation. In addition, their influence on adhesive force as well as efficiency of self-cleaning is discussed.


2020 ◽  
Vol 326 ◽  
pp. 04005
Author(s):  
Stephan Milles ◽  
Marcos Soldera ◽  
Bogdan Voisiat ◽  
Andrés Fabián Lasagni

In this work, the fabrication of multifunctional periodic microstructures on pure aluminium is presented. Three different geometries were fabricated with feature sizes ranging between 7 µm and 50 µm by using laser-based microstructuring methods. In detail, nanosecond pulsed direct laser writing and picosecond pulsed direct laser interference patterning were used with infrared laser radiation. The wetting characteristics of these structures were investigated performing static water contact angle measurements as well as by measuring the contact angle hysteresis and the sliding angle. The final wetting results show constant static contact angles above 150°, permitting the water droplets to roll off the substrate as well as collecting contamination at the same time. This self-cleaning effect led to a reduction of up to 94% of the spread of 1 µm sized manganese oxide particles. In addition, the freezing time required for droplets laying on the patterned surfaces was increased nearly by 300% at a temperature of 20 °C below zero. Finally, the results are compared to finite element simulations of heat transfer.


2018 ◽  
Vol 90 (3) ◽  
pp. 551-561 ◽  
Author(s):  
Maria J. Mosquera ◽  
Luis A.M. Carrascosa ◽  
Nabil Badreldin

AbstractWater is the main vehicle of decay agents in Cultural Heritage building materials exposed to weathering. In this work, a simple method to produce superhydrophobic/oleophobic coatings building materials, including under outdoors conditions, has been developed. In addition, a study of the behavior of the developed coatings on different substrates (limestone, granite, concrete and wood) is reported. The addition of 40 nm-SiO2nanoparticles to a fluoroalkylsilane reduces surface energy and produces a Cassie-Baxter surface in all the materials evaluated. It promotes high static contact angle values of around 160°, and a contact angle hysteresis of around 3°, giving rise to repellence. The building surfaces also demonstrate an excellent self-cleaning performance. The coatings maintain the building materials esthetics as required in the Cultural Heritage field. Finally, the coating presents a long-lasting performance due to condensation reactions producing effective grafting to the four building materials evaluated.


2020 ◽  
Vol 17 (3) ◽  
pp. 421-435
Author(s):  
Xiang Liu ◽  
Dekun Zhang ◽  
Zhiguang Guo

AbstractResearch on antistatic superhydrophobic surfaces has attracted widespread attention in some fields. However, in the application of superhydrophobic materials, fabricating stable and practical superhydrophobic surfaces through facile and low-cost approaches still faces considerable challenges. Herein, a polyphenylene sulfide (PPS)-based antistatic superhydrophobic composite coating with a high water contact angle (166°) and a low sliding angle (2°) was fabricated on a Q345 steel surface through a simple spray-coating method without any modifier. Furthermore, the as-prepared superhydrophobic coating also displayed excellent superhydrophobicity for water droplets at different pH values, as well as self-cleaning, anti-fouling and anti-icing properties. Importantly, the superhydrophobic coating still exhibited superhydrophobicity after calcination at 350 °C for 1 h, indicating its outstanding thermal stability. Excellent antistatic and anticorrosion properties were obtained on the prepared coating surface, which allows the coating to be applied under harsh conditions. Benefiting from the above characteristics, compared with the commercial coating, the as-obtained antistatic superhydrophobic coating may be applied more widely in related fields.


Biomimetics ◽  
2021 ◽  
Vol 6 (2) ◽  
pp. 38
Author(s):  
Quentin Legrand ◽  
Stephane Benayoun ◽  
Stephane Valette

This investigation of morphology-wetting links was performed using a biomimetic approach. Three natural leaves’ surfaces were studied: two bamboo varieties and Ginkgo Biloba. Multiscale surface topographies were analyzed by SEM observations, FFT, and Gaussian filtering. A PDMS replicating protocol of natural surfaces was proposed in order to study the purely morphological contribution to wetting. High static contact angles, close to 135∘, were measured on PDMS replicated surfaces. Compared to flat PDMS, the increase in static contact angle due to purely morphological contribution was around 20∘. Such an increase in contact angle was obtained despite loss of the nanometric scale during the replication process. Moreover, a significant decrease of the hysteresis contact angle was measured on PDMS replicas. The value of the contact angle hysteresis moved from 40∘ for flat PDMS to less than 10∘ for textured replicated surfaces. The wetting behavior of multiscale textured surfaces was then studied in the frame of the Wenzel and Cassie–Baxter models. Whereas the classical laws made it possible to describe the wetting behavior of the ginkgo biloba replications, a hierarchical model was developed to depict the wetting behavior of both bamboo species.


Sign in / Sign up

Export Citation Format

Share Document