Flow dynamics and heat transfer in partially porous microchannel heat sinks

2019 ◽  
Vol 875 ◽  
pp. 1035-1057 ◽  
Author(s):  
Mohammad Zargartalebi ◽  
Jalel Azaiez

In this study, the flow dynamics and heat transfer in partially filled pin-based microchannel heat sinks (MCHS) are examined. The lattice Boltzmann method is used to analyse the physics of these systems and examine the effects of the flow, pin configuration, size and porous medium height. The results of the study reveal that, unlike the fully filled pin-based MCHS, there is no unique behaviour for the pin configuration effects and the performance of partially filled pin-based MCHS depends on the porous medium size and structure as well as the inertial forces in the flow. In particular, it is found that there are hydrodynamic and thermal-based critical porous medium heights at which the best performance in terms of heat removal switches from the inline to the staggered configuration. The dependence of these critical heights on the Reynolds number and the porous medium properties are analysed and the effects of the flow dynamics are further unravelled through a particle tracing technique. Furthermore, a simple flow model is developed, and is shown to capture well the main trends obtained from the simulations and to bring to light more of the system physics that help explain the interplay between the different parameters.

Author(s):  
Suresh V. Garimella ◽  
Vishal Singhal

Microchannel heat sinks are widely regarded as being amongst the most effective heat removal techniques from space-constrained electronic devices. However, the fluid flow and heat transfer in microchannels is not fully understood. The pumping requirements for flow through microchannels are also very high and none of the micropumps in the literature are truly suitable for this application. A wide-ranging research program on microchannel heat sinks and micropumps is underway in the Electronics Cooling Laboratory at Purdue University. This article provides an overview of the research being conducted to understand fluid flow and heat transfer in microchannels and to identify pumping requirements and suitable mechanisms for pumping in microchannels.


Author(s):  
Farnaz Faily ◽  
Haleh Shafeie ◽  
Omid Abouali

This paper presents a numerical study for the single phase heat transfer of water in the heat sinks with different types of the grooved microchannels. The cross section of the grooves is either rectangular or arced shape. The grooves are embedded vertically in the side walls of the microchannel but for the floor, different orientation angles of the grooves in the range of 0–60° are investigated. As well, for the grooves on the floor of the channel, the chevron-shape is another pattern which has bee studied. A 3-D computational model is developed for each of the studied cases and the conjugate heat transfer in both solid and liquid is investigated. The governing equations are solved numerically to determine the pressure drop and heat transfer through the heat sink. The results of the heat removal and coefficient of performance (COP) for different types of the grooved microchannel heat sinks are compared to each other as well with those for a simple microchannel heat sink with minimum fin thickness. The comparison shows that the case with minimum vertical fin thickness and arc grooves aligned in 60° on the floor has the maximum heat removal and COP among the studied cases.


2012 ◽  
Vol 55 (9-10) ◽  
pp. 2559-2570 ◽  
Author(s):  
Tu-Chieh Hung ◽  
Wei-Mon Yan ◽  
Xiao-Dong Wang ◽  
Chun-Yen Chang

2004 ◽  
Vol 126 (2) ◽  
pp. 247-255 ◽  
Author(s):  
Duckjong Kim ◽  
Sung Jin Kim

In the present work, a compact modeling method based on a volume-averaging technique is presented. Its application to an analysis of fluid flow and heat transfer in straight fin heat sinks is then analyzed. In this study, the straight fin heat sink is modeled as a porous medium through which fluid flows. The volume-averaged momentum and energy equations for developing flow in these heat sinks are obtained using the local volume-averaging method. The permeability and the interstitial heat transfer coefficient required to solve these equations are determined analytically from forced convective flow between infinite parallel plates. To validate the compact model proposed in this paper, three aluminum straight fin heat sinks having a base size of 101.43mm×101.43mm are tested with an inlet velocity ranging from 0.5 m/s to 2 m/s. In the experimental investigation, the heat sink is heated uniformly at the bottom. The resulting pressure drop across the heat sink and the temperature distribution at its bottom are then measured and are compared with those obtained through the porous medium approach. Upon comparison, the porous medium approach is shown to accurately predict the pressure drop and heat transfer characteristics of straight fin heat sinks. In addition, evidence indicates that the entrance effect should be considered in the thermal design of heat sinks when Re Dh/L>∼O10.


Sign in / Sign up

Export Citation Format

Share Document