scholarly journals Diffusiophoresis, Batchelor scale and effective Péclet numbers

2019 ◽  
Vol 876 ◽  
pp. 818-829 ◽  
Author(s):  
Florence Raynal ◽  
Romain Volk

We study the joint mixing of colloids and salt released together in a stagnation point or in a globally chaotic flow. In the presence of salt inhomogeneities, the mixing time is strongly modified depending on the sign of the diffusiophoretic coefficient $D_{dp}$. Mixing is delayed when $D_{dp}>0$ (salt-attracting configuration), or faster when $D_{dp}<0$ (salt-repelling configuration). In both configurations, as for molecular diffusion alone, large scales are barely affected in the dilating direction while the Batchelor scale for the colloids, $\ell _{c,diff}$, is strongly modified by diffusiophoresis. We propose here to measure a global effect of diffusiophoresis in the mixing process through an effective Péclet number built on this modified Batchelor scale. Whilst this small scale is obtained analytically for the stagnation point, in the case of chaotic advection, we derive it using the equation of gradients of concentration, following Raynal & Gence (Intl J. Heat Mass Transfer, vol. 40 (14), 1997, pp. 3267–3273). Comparing to numerical simulations, we show that the mixing time can be predicted by using the same function as in absence of salt, but as a function of the effective Péclet numbers computed for each configuration. The approach is shown to be valid when the ratio $D_{dp}^{2}/D_{s}D_{c}\gg 1$, where $D_{c}$ and $D_{s}$ are the diffusivities of the colloids and salt.

Processes ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 1311 ◽  
Author(s):  
Marian Kordas ◽  
Maciej Konopacki ◽  
Bartłomiej Grygorcewicz ◽  
Adrian Augustyniak ◽  
Daniel Musik ◽  
...  

Biotechnological processes involving the presence of microorganisms are realized by using various types of stirred tanks or laboratory-scale dual-impeller commercial bioreactor. Hydrodynamics and mass transfer rate are crucial parameters describing the functionality and efficiency of bioreactors. Both parameters strictly depend on mixing applied during bioprocesses conducted in bioreactors. Establishing optimum hydrodynamics conditions for the realized process with microorganisms maximizes the yield of desired products. Therefore, our main objective was to analyze and define the main operational hydrodynamic parameters (including flow field, power consumption, mixing time, and mixing energy) and mass transfer process (in this case, gas–liquid transfer) of two different commercial bioreactors (BioFlo® 115 and BioFlo® 415). The obtained results are allowed using mathematical relationships to describe the analyzed processes that can be used to predict the mixing process and mass transfer ratio in BioFlo® bioreactors. The proposed correlations may be applied for the design of a scaled-up or scaled-down bioreactors.


2014 ◽  
Vol 12 (1) ◽  
pp. 285-293 ◽  
Author(s):  
Cong Xu ◽  
Jiao Wang

Abstract A microextractor comprising an inlet channel, a mixing chamber, two feedback channels, and an outlet channel and having no moving parts was designed for immiscible liquid–liquid extraction. Two liquids were mixed passively without any external energy input, and the extraction was completed in the microextractor. The extractor performance with or without a splitter was investigated by visualization and mass transfer experiments. Two mixing mechanisms were observed: (i) molecular diffusion at lower Reynolds number and (ii) chaotic advection at higher Reynolds number. The transition point between the two mechanisms was at Reynolds numbers 375.2 and 179.9 for the aqueous phase (3 mol/L HNO3 solution) and the organic phase (30% tributyl phosphate (TBP)–kerosene solution), respectively. In the chaotic advection mode, two vortexes rotating in opposite directions were formed on both sides of the main flow, which enhanced the mass transfer between the two liquids. Mass transfer between the 3 mol/L HNO3 and 30% TBP–kerosene solutions was achieved with an efficiency of 92.8% at the extractor exit when the extractor operated in the chaotic advection mode.


Sign in / Sign up

Export Citation Format

Share Document