immiscible liquid
Recently Published Documents


TOTAL DOCUMENTS

485
(FIVE YEARS 81)

H-INDEX

34
(FIVE YEARS 5)

2022 ◽  
Author(s):  
Chenxuan Li ◽  
Brian Lee ◽  
Chenxu Wang ◽  
Aayushi Bajpayee ◽  
Lacey Douglas ◽  
...  

The development of low-cost and scalable superhydrophobic coating methods demands viable approaches for energy-efficient separation of immiscible liquid/liquid mixtures. A scalable photoinitiated method is developed to functionalize stainless-steel mesh with...


2021 ◽  
Author(s):  
Zhongyu Shi ◽  
Guanqing Wang ◽  
Xiangxiang Chen ◽  
Lu Wang ◽  
Ning Ding ◽  
...  

Abstract The phenomenon of droplet impact on the immiscible liquid is encountered in a variety of scenarios in nature and industrial production. Despite the exhaustive researches, it is not fully clear how the immiscibility of the droplet with impact liquid affects the crown evolution. The present work experimentally investigates the evolution kinematics of crown formed by a normal impact of camellia oil droplet on immiscible water layer. Based on discussion of dynamic impact behaviors for three critical Weber numbers (We), the radius of crown and its average spreading velocity are compared with those of previous theoretical models to discuss their applicability to the immiscible liquid. The evolution kinematics (morphology and velocity) are analyzed by considering the effects of We and layer thickness. Furthermore, the ability of crown expansion in radical and vertical directions is characterized by a velocity ratio. The results show that our experimental crown radius still follows a square-root function of evolution time, which agrees with the theoretical predictions. The dimensionless average spreading velocity decreases with We and follows a power-law, while the dimensionless average rising velocity remains constant. The velocity ratio is shown to be linearly increasing with We, demonstrating that the rising movement in crown evolution gradually enhances with We. These results are helpful for further investigation on the droplet impact on immiscible liquid layer.


Langmuir ◽  
2021 ◽  
Author(s):  
Lu Liu ◽  
Jian Jiang ◽  
Shulei Zhang ◽  
Meng Zhu ◽  
Xinyu Dong ◽  
...  

2021 ◽  
Vol 13 (11) ◽  
pp. 168781402110454
Author(s):  
Mohammad Raad ◽  
Sajad Rezazadeh ◽  
Habib Jalili ◽  
Davod Abbasinezhad Fallah

Droplet splitting as a significant feature of droplet-based microfluidic systems has been widely employed in biotechnology, biomedical engineering, tissue engineering, and it has been preferred over continuous flow systems. In the present paper, two-dimensional numerical simulations have been done to examine the asymmetrical droplet splitting process. The two-phase level set method (LSM) has been predicted to analyze the mechanism of droplet formation and droplet splitting in immiscible liquid/liquid two-phase flow in the branched T-junction microchannel. Governing equations on flow field have been discretized and solved using finite element-based COMSOL Multiphysics software (version 5.3a). Obtained numerical results were validated by experimental data reported in the literature which show acceptable agreement. The model was developed to simulate the mechanism of droplet splitting at the branched T-junction microchannel. This study provides a passive technique to asymmetrically split up microdroplets at the downstream T-junctions. The results show that outlet branches’ pressure gradient affects the droplet splitting. Specifically, it has been shown that the splitting ratio increases by increasing the length ratio, and equal droplet splitting can be achieved where the ratio is LL/ Lu = 1. We have used two outlet branches having the same width but different lengths to create the required pressure gradient. As the length ratio of the outlet branches increases, the diameter ratio increases as well.


2021 ◽  
Vol 127 (14) ◽  
Author(s):  
Benjamin Reichert ◽  
Jean-Benoît Le Cam ◽  
Arnaud Saint-Jalmes ◽  
Giuseppe Pucci

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Donatien Mottin ◽  
Tsaihsing Martin Ho ◽  
Peichun Amy Tsai

Purpose Monodisperse microfluidic emulsions – droplets in another immiscible liquid – are beneficial to various technological applications in analytical chemistry, material and chemical engineering, biology and medicine. Upscaling the mass production of micron-sized monodisperse emulsions, however, has been a challenge because of the complexity and technical difficulty of fabricating or upscaling three-dimensional (3 D) microfluidic structures on a chip. Therefore, the authors develop a fluid dynamical design that uses a standard and straightforward 3 D printer for the mass production of monodisperse droplets. Design/methodology/approach The authors combine additive manufacturing, fluid dynamical design and suitable surface treatment to create an easy-to-fabricate device for the upscaling production of monodisperse emulsions. Considering hydrodynamic networks and associated flow resistance, the authors adapt microfluidic flow-focusing junctions to produce (water-in-oil) emulsions in parallel in one integrated fluidic device, under suitable flow rates and channel sizes. Findings The device consists of 32 droplet-makers in parallel and is capable of mass-producing 14 L/day of monodisperse emulsions. This convenient method can produce 50,000 millimetric droplets per hour. Finally, the authors extend the current 3 D printed fluidics with the generated emulsions to synthesize magnetic microspheres. Originality/value Combining additive manufacturing and hydrodynamical concepts and designs, the authors experimentally demonstrate a facile method of upscaling the production of useful monodisperse emulsions. The design and approach will be beneficial for mass productions of smart and functional microfluidic materials useful in a myriad of applications.


Sign in / Sign up

Export Citation Format

Share Document