scholarly journals Effect of sidewall on heat transfer and flow structure in Rayleigh–Bénard convection

2019 ◽  
Vol 881 ◽  
pp. 218-243 ◽  
Author(s):  
Zhen-Hua Wan ◽  
Ping Wei ◽  
Roberto Verzicco ◽  
Detlef Lohse ◽  
Guenter Ahlers ◽  
...  

In Rayleigh–Bénard convection experiments, the thermal coupling between the sidewall and fluid is unavoidable. As a result, the thermal properties of the sidewall can influence the flow structure that develops. To get a better understanding of the influence of the sidewall, we performed a one-to-one comparison between experiments and direct numerical simulations (DNS) in aspect ratio (diameter over height) $\unicode[STIX]{x1D6E4}=1.00$ samples. We focus on the global heat transport, i.e. the Nusselt number $Nu$, and the local vertical temperature gradients near the horizontal mid-plane on the cylinder axis and close to the sidewall. The data cover the range $10^{5}\lesssim Ra\lesssim 10^{10}$ where $Ra$ is the Rayleigh number. The $Nu$ number obtained from experimental measurements and DNS, in which we use an adiabatic sidewall, agree well. The experiments are performed with several gases, which have widely varying thermal conductivities, but all have a Prandtl number $Pr\approx 0.7$. For $Ra\gtrsim 10^{7}$, both experiments and DNS reveal a stabilizing (positive) temperature gradient at the cylinder axis. This phenomenon was known for high $Pr$, but had not been observed for small $Pr\approx 0.7$ before. The experiments reveal that the temperature gradient decreases with decreasing $Ra$ and eventually becomes destabilizing (negative). The decrease appears at a higher $Ra$ when the sidewall admittance, which measures how easily the heat transfers from the fluid to the wall, is smaller. However, the simulations with an adiabatic sidewall do not reproduce the destabilizing temperature gradient at the cylinder axis in the low $Ra$ number regime. Instead, these simulations show that the temperature gradient increases with decreasing $Ra$. We find that the simulations can reproduce the experimental findings on the temperature gradient at the cylinder axis qualitatively when we consider the physical properties of the sidewall and the thermal shields. However, the temperature gradients obtained from experiments and simulations do not agree quantitatively. The reason is that it is incredibly complicated to reproduce all experimental details accurately due to which it is impossible to reproduce all experimental measurement details. The simulations show, in agreement with the models of Ahlers (Phys. Rev. E, vol. 63 (1), 2000, 015303) and Roche et al. (Eur. Phys. J. B, vol. 24 (3), 2001, pp. 405–408), that the sidewall can act as an extra heat conductor, which absorbs heat from the fluid near the bottom plate and releases it into the fluid near the top plate. The importance of this effect decreases with increasing $Ra$. A crucial finding of the simulations is that the thermal coupling between the sidewall and fluid can strongly influence the flow structure, which can result in significant changes in heat transport. Since this effect goes beyond a simple short circuit of the heat transfer through the sidewall, it is impossible to correct experimental measurements for this effect. Therefore, careful design of experimental set-ups is required to minimize the thermal interaction between the fluid and sidewall.

2017 ◽  
Vol 835 ◽  
pp. 491-511 ◽  
Author(s):  
Dennis Bakhuis ◽  
Rodolfo Ostilla-Mónico ◽  
Erwin P. van der Poel ◽  
Roberto Verzicco ◽  
Detlef Lohse

A series of direct numerical simulations of Rayleigh–Bénard convection, the flow in a fluid layer heated from below and cooled from above, were conducted to investigate the effect of mixed insulating and conducting boundary conditions on convective flows. Rayleigh numbers between $Ra=10^{7}$ and $Ra=10^{9}$ were considered, for Prandtl numbers $\mathit{Pr}=1$ and $\mathit{Pr}=10$. The bottom plate was divided into patterns of conducting and insulating stripes. The size ratio between these stripes was fixed to unity and the total number of stripes was varied. Global quantities, such as the heat transport and average bulk temperature, and local quantities, such as the temperature just below the insulating boundary wall, were investigated. For the case with the top boundary divided into two halves, one conducting and one insulating, the heat transfer was found to be approximately two-thirds of that for the fully conducting case. Increasing the pattern frequency increased the heat transfer, which asymptotically approached the fully conducting case, even if only half of the surface is conducting. Fourier analysis of the temperature field revealed that the imprinted pattern of the plates is diffused in the thermal boundary layers, and cannot be detected in the bulk. With conducting–insulating patterns on both plates, the trends previously described were similar; however, the half-and-half division led to a heat transfer of about a half of that for the fully conducting case instead of two-thirds. The effect of the ratio of conducting and insulating areas was also analysed, and it was found that, even for systems with a top plate with only 25 % conducting surface, heat transport of 60 % of the fully conducting case can be seen. Changing the one-dimensional stripe pattern to a two-dimensional chequerboard tessellation does not result in a significantly different response of the system.


2019 ◽  
Vol 142 (1) ◽  
Author(s):  
Vishnu Venugopal T ◽  
Arnab Kumar De ◽  
Pankaj Kumar Mishra

Abstract A direct numerical simulation of rotating Rayleigh–Bénard convection (RBC) for different fluids (Pr=0.015,0.7,1,7,20, and 100) in a cylindrical cell of aspect ratio Γ=0.5 is carried out in this work. The effect of rotation on the heat transfer rate, flow structures, their associated dynamics, and influence on the boundary layers are investigated. The Rayleigh number is fixed to Ra=106 and the rotation rates are varied for a wide range, starting from no rotation (Ro→∞) to high rotation rates (Ro≈0.01). For all the Prandtl numbers (Pr=0.015–100), a reduction in heat transfer with increase in rotation is observed. However, for Pr=7 and 20, a marginal increase of the Nusselt number for low rotation rates is obtained, which is attributed to the change in the flow structure from quadrupolar to dipolar state. The change in flow structure is associated with the statistical behavior of the boundary layers. As the flow makes a transition from quadrupolar to dipolar state, a reduction in the thermal boundary layer thickness is observed. At higher rotation rates, the thermal boundary layer thickness shows a power law variation with the rotation rate. The power law exponent is close to unity for moderate Pr, while it reduces for both lower and higher Pr. At extremely high rotation rates, the flow makes a transition to the conduction state. The critical rotation rate (1/Roc) for which transition to the conduction state is observed depends on the Prandtl number according to 1/Roc∝Pr0.5.


2017 ◽  
Vol 836 ◽  
Author(s):  
Yi-Zhao Zhang ◽  
Chao Sun ◽  
Yun Bao ◽  
Quan Zhou

Rough surfaces have been widely used as an efficient way to enhance the heat-transfer efficiency in turbulent thermal convection. In this paper, however, we show that roughness does not always mean a heat-transfer enhancement, but in some cases it can also reduce the overall heat transport through the system. To reveal this, we carry out numerical investigations of turbulent Rayleigh–Bénard convection over rough conducting plates. Our study includes two-dimensional (2D) simulations over the Rayleigh number range $10^{7}\leqslant Ra\leqslant 10^{11}$ and three-dimensional (3D) simulations at $Ra=10^{8}$. The Prandtl number is fixed to $Pr=0.7$ for both the 2D and the 3D cases. At a fixed Rayleigh number $Ra$, reduction of the Nusselt number $Nu$ is observed for small roughness height $h$, whereas heat-transport enhancement occurs for large $h$. The crossover between the two regimes yields a critical roughness height $h_{c}$, which is found to decrease with increasing $Ra$ as $h_{c}\sim Ra^{-0.6}$. Through dimensional analysis, we provide a physical explanation for this dependence. The physical reason for the $Nu$ reduction is that the hot/cold fluid is trapped and accumulated inside the cavity regions between the rough elements, leading to a much thicker thermal boundary layer and thus impeding the overall heat flux through the system.


2017 ◽  
Vol 830 ◽  
Author(s):  
Pranav Joshi ◽  
Hadi Rajaei ◽  
Rudie P. J. Kunnen ◽  
Herman J. H. Clercx

This experimental study focuses on the effect of horizontal boundaries with pyramid-shaped roughness elements on the heat transfer in rotating Rayleigh–Bénard convection. It is shown that the Ekman pumping mechanism, which is responsible for the heat transfer enhancement under rotation in the case of smooth top and bottom surfaces, is unaffected by the roughness as long as the Ekman layer thickness $\unicode[STIX]{x1D6FF}_{E}$ is significantly larger than the roughness height $k$. As the rotation rate increases, and thus $\unicode[STIX]{x1D6FF}_{E}$ decreases, the roughness elements penetrate the radially inward flow in the interior of the Ekman boundary layer that feeds the columnar Ekman vortices. This perturbation generates additional thermal disturbances which are found to increase the heat transfer efficiency even further. However, when $\unicode[STIX]{x1D6FF}_{E}\approx k$, the Ekman boundary layer is strongly perturbed by the roughness elements and the Ekman pumping mechanism is suppressed. The results suggest that the Ekman pumping is re-established for $\unicode[STIX]{x1D6FF}_{E}\ll k$ as the faces of the pyramidal roughness elements then act locally as a sloping boundary on which an Ekman layer can be formed.


2009 ◽  
Vol 80 (2) ◽  
Author(s):  
Paolo Oresta ◽  
Roberto Verzicco ◽  
Detlef Lohse ◽  
Andrea Prosperetti

Sign in / Sign up

Export Citation Format

Share Document