Analytical model of nonlinear evolution of single-mode Rayleigh–Taylor instability in cylindrical geometry

2020 ◽  
Vol 900 ◽  
Author(s):  
Zhiye Zhao ◽  
Pei Wang ◽  
Nansheng Liu ◽  
Xiyun Lu

Abstract

2013 ◽  
Vol 15 (10) ◽  
pp. 961-968 ◽  
Author(s):  
Lifeng Wang ◽  
Wenhua Ye ◽  
Zhengfeng Fan ◽  
Junfeng Wu ◽  
Yingjun Li ◽  
...  

1976 ◽  
Vol 15 (2) ◽  
pp. 239-244 ◽  
Author(s):  
G. L. Kalra ◽  
S. N. Kathuria

Nonlinear theory of Rayleigh—Taylor instability in plasma supported by a vacuum magnetic field shows that the growth rate of the mode, unstable in the linear theory, increases if the wavelength of perturbation π lies betweenand 2πcrit. This might have an important bearing on the proposed thermonuclear MHD power generation experiments.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Wanhai Liu ◽  
Xiang Wang ◽  
Xingxia Liu ◽  
Changping Yu ◽  
Ming Fang ◽  
...  

2018 ◽  
Vol 838 ◽  
pp. 320-355 ◽  
Author(s):  
R. V. Morgan ◽  
W. H. Cabot ◽  
J. A. Greenough ◽  
J. W. Jacobs

Experiments and large eddy simulation (LES) were performed to study the development of the Rayleigh–Taylor instability into the saturated, nonlinear regime, produced between two gases accelerated by a rarefaction wave. Single-mode two-dimensional, and single-mode three-dimensional initial perturbations were introduced on the diffuse interface between the two gases prior to acceleration. The rarefaction wave imparts a non-constant acceleration, and a time decreasing Atwood number, $A=(\unicode[STIX]{x1D70C}_{2}-\unicode[STIX]{x1D70C}_{1})/(\unicode[STIX]{x1D70C}_{2}+\unicode[STIX]{x1D70C}_{1})$, where $\unicode[STIX]{x1D70C}_{2}$ and $\unicode[STIX]{x1D70C}_{1}$ are the densities of the heavy and light gas, respectively. Experiments and simulations are presented for initial Atwood numbers of $A=0.49$, $A=0.63$, $A=0.82$ and $A=0.94$. Nominally two-dimensional (2-D) experiments (initiated with nearly 2-D perturbations) and 2-D simulations are observed to approach an intermediate-time velocity plateau that is in disagreement with the late-time velocity obtained from the incompressible model of Goncharov (Phys. Rev. Lett., vol. 88, 2002, 134502). Reacceleration from an intermediate velocity is observed for 2-D bubbles in large wavenumber, $k=2\unicode[STIX]{x03C0}/\unicode[STIX]{x1D706}=0.247~\text{mm}^{-1}$, experiments and simulations, where $\unicode[STIX]{x1D706}$ is the wavelength of the initial perturbation. At moderate Atwood numbers, the bubble and spike velocities approach larger values than those predicted by Goncharov’s model. These late-time velocity trends are predicted well by numerical simulations using the LLNL Miranda code, and by the 2009 model of Mikaelian (Phys. Fluids., vol. 21, 2009, 024103) that extends Layzer type models to variable acceleration and density. Large Atwood number experiments show a delayed roll up, and exhibit a free-fall like behaviour. Finally, experiments initiated with three-dimensional perturbations tend to agree better with models and a simulation using the LLNL Ares code initiated with an axisymmetric rather than Cartesian symmetry.


Sign in / Sign up

Export Citation Format

Share Document