Topological description of near-wall flows around a surface-mounted square cylinder at high Reynolds numbers

2021 ◽  
Vol 933 ◽  
Author(s):  
Yong Cao ◽  
Tetsuro Tamura ◽  
Dai Zhou ◽  
Yan Bao ◽  
Zhaolong Han

This study topologically describes near-wall flows around a surface-mounted cylinder at a high Reynolds number ( $Re$ ) of $5\times 10^4$ and in a very thick boundary layer, which were partially measured or technically approximated from the literature. For complete and rational flow construction, we use high-resolution simulations and critical-point theory. The large-scale near-wake vortex is composed of two connected segments rolled up from the sides of the cylinder and from the free end. Another large-scale side vortex clearly roots on two notable foci on the lower side wall. In the junction region, the side vortex moves upwards with a curved trajectory, which induces the formation of nodes on the ground surface. In the free-end region, the side vortex is compressed, which results in a smaller trailing-edge vortex and its downstream movement. Only tip vortices are observed in the far wake. The origin of the tip vortices and their distinction from the near-wake vortex are discussed. Further analyses suggest that $Re$ independence should be treated with high caution when $Re$ increases from 500 to ${O}(10^4)$ . The occurrence of upwash flow behind the cylinder strongly depends on the increase in $Re$ , the mechanism of which is also provided. The separation–reattachment process in the junction region and the trailing-edge vortices are discovered only at a high $Re$ . The former should significantly affect the strength of the side vortex in the junction region and the latter should cause a sharp drop in pressure near the trailing edge.

In streamlined flow past a flat plate aligned with a uniform stream, it is shown that ( a ) the Goldstein near-wake and ( b ) the Blasius boundary layer are non-unique solutions locally for the classical boundary layer equations, whereas ( c ) the Rott-Hakkinen very-near-wake appears to be unique. In each of ( a ) and ( b ) an alternative solution exists, which has reversed flow and which apparently cannot be discounted on immediate grounds. So, depending mainly on how the alternatives for ( a ), ( b ) develop downstream, the symmetric flow at high Reynolds numbers could have two, four or more steady forms. Concerning non-streamlined flow, for example past a bluff obstacle, new similarity forms are described for the pressure-free viscous symmetric closure of a predominantly slender long wake beyond a large-scale separation. Features arising include non-uniqueness, singularities and algebraic behaviour, consistent with non-entraining shear layers with algebraic decay. Non-uniqueness also seems possible in reattachment onto a solid surface and for non-symmetric or pressure-controlled flows including the wake of a symmetric cascade.


Author(s):  
J. J. Koncoski ◽  
M. H. Krane ◽  
J. P. Welz ◽  
D. R. Hanson ◽  
S. M. Willits ◽  
...  

Abstract This work documents flow characterization and cavitation inception of a co-rotating vortex pair shed from a single fin with a rounded tip at zero angle of attack. The fin was outfitted with a removable tip fabricated using a rapid prototype method. The co-rotating vortices result from surface discontinuities on the removable tip, near a hard wax fairing used to cover the tip attachment bolt. The vortices are shed at different locations along the chord. Flow visualization by oil paint and developed cavitation, and SPIV of the near-wake, indicate that a strong vortex is shed at the trailing edge, while a weaker vortex is shed at 82% chord. Horizontal wandering of the vortices is uncorrelated. Vertical wandering of the vortices is characterized by opposing oscillations about their mutual center. Acoustic cavitation inception in the water tunnel environment is discerned at an index 13% greater than visual detection of cavitation, and occurs within one chord of the trailing edge. The influence of the co-rotating vortex system on cavitation inception must be determined from comparison with measurements of a solitary vortex generated by analogous geometry.


Author(s):  
R. P. Shreeve ◽  
Y. Elazar ◽  
J. W. Dreon ◽  
A. Baydar

The results of two component laser-Doppler velocimeter (LDV) surveys made in the near wake (to one fifth chord) of a controlled diffusion (CD) compressor blade in a large scale cascade wind tunnel, are reported. The measurements were made at three positive incidence angles from near-design to angles thought to approach stall. Comparisons were made with calibrated pressure probe and hot-wire wake measurements and good agreement was found. The flow was found to be fully attached at the trailing edge at all incidence angles and the wake profiles were found to be highly skewed. Despite the precision obtained in the wake velocity profiles, the blade loss could not be evaluated accurately without measurements of the pressure field. The blade trailing edge surface pressures and velocity profiles were found to be consistent with downstream pressure probe measurements of loss, allowing conclusions to be drawn concerning the design of the trailing edge.


1991 ◽  
Vol 113 (4) ◽  
pp. 591-599 ◽  
Author(s):  
R. P. Shreeve ◽  
Y. Elazar ◽  
J. W. Dreon ◽  
A. Baydar

The results of two component laser-Doppler velocimeter (LDV) surveys made in the near wake (to one fifth chord) of a controlled diffusion (CD) compressor blade in a large-scale cascade wind tunnel are reported. The measurements were made at three positive incidence angles from near design to angles thought to approach stall. Comparisons were made with calibrated pressure probe and hot-wire wake measurements and good agreement was found. The flow was found to be fully attached at the trailing edge at all incidence angles and the wake profiles were found to be highly skewed. Despite the precision obtained in the wake velocity profiles, the blade loss could not be evaluated accurately without measurements of the pressure field. The blade trailing edge surface pressures and velocity profiles were found to be consistent with downstream pressure probe measurements of loss, allowing conclusions to be drawn concerning the design of the trailing edge.


Author(s):  
W. J. Baars ◽  
N. Hutchins ◽  
I. Marusic

Small-scale velocity fluctuations in turbulent boundary layers are often coupled with the larger-scale motions. Studying the nature and extent of this scale interaction allows for a statistically representative description of the small scales over a time scale of the larger, coherent scales. In this study, we consider temporal data from hot-wire anemometry at Reynolds numbers ranging from Re τ ≈2800 to 22 800, in order to reveal how the scale interaction varies with Reynolds number. Large-scale conditional views of the representative amplitude and frequency of the small-scale turbulence, relative to the large-scale features, complement the existing consensus on large-scale modulation of the small-scale dynamics in the near-wall region. Modulation is a type of scale interaction, where the amplitude of the small-scale fluctuations is continuously proportional to the near-wall footprint of the large-scale velocity fluctuations. Aside from this amplitude modulation phenomenon, we reveal the influence of the large-scale motions on the characteristic frequency of the small scales, known as frequency modulation. From the wall-normal trends in the conditional averages of the small-scale properties, it is revealed how the near-wall modulation transitions to an intermittent-type scale arrangement in the log-region. On average, the amplitude of the small-scale velocity fluctuations only deviates from its mean value in a confined temporal domain, the duration of which is fixed in terms of the local Taylor time scale. These concentrated temporal regions are centred on the internal shear layers of the large-scale uniform momentum zones, which exhibit regions of positive and negative streamwise velocity fluctuations. With an increasing scale separation at high Reynolds numbers, this interaction pattern encompasses the features found in studies on internal shear layers and concentrated vorticity fluctuations in high-Reynolds-number wall turbulence. This article is part of the themed issue ‘Toward the development of high-fidelity models of wall turbulence at large Reynolds number’.


1998 ◽  
Vol 120 (2) ◽  
pp. 378-384
Author(s):  
S. D. Sharma ◽  
R. K. Sahoo

Experimental results, obtained from hot-wire measurements using a conditional sampling technique, demonstrate feasibility of controlling large-scale spanwise vortices (coherent structures) in the near wake region behind a rectangular base by means of suction through a slit at just one of the trailing edges. The suction thus employed, is found to influence the near wake topology with strong asymmetry and disturb the net vorticity balance. Moreover, a significant reduction in the base drag is achieved as a consequence of the trailing edge suction. The mechanism of the drag reduction is understood to lie in a marked change in the wake dynamics including attenuation in the size and strength of the coherent structures.


2012 ◽  
Vol 704 ◽  
pp. 137-172 ◽  
Author(s):  
G. Brethouwer ◽  
Y. Duguet ◽  
P. Schlatter

AbstractDirect numerical simulations of subcritical rotating, stratified and magneto-hydrodynamic wall-bounded flows are performed in large computational domains, focusing on parameters where laminar and turbulent flow can stably coexist. In most cases, a regime of large-scale oblique laminar-turbulent patterns is identified at the onset of transition, as in the case of pure shear flows. The current study indicates that this oblique regime can be shifted up to large values of the Reynolds number $\mathit{Re}$ by increasing the damping by the Coriolis, buoyancy or Lorentz force. We show evidence for this phenomenon in three distinct flow cases: plane Couette flow with spanwise cyclonic rotation, plane magnetohydrodynamic channel flow with a spanwise or wall-normal magnetic field, and open channel flow under stable stratification. Near-wall turbulence structures inside the turbulent patterns are invariably found to scale in terms of viscous wall units as in the fully turbulent case, while the patterns themselves remain large-scale with a trend towards shorter wavelength for increasing $\mathit{Re}$. Two distinct regimes are identified: at low Reynolds numbers the patterns extend from one wall to the other, while at large Reynolds number they are confined to the near-wall regions and the patterns on both channel sides are uncorrelated, the core of the flow being highly turbulent without any dominant large-scale structure.


Author(s):  
Nicholas Hutchins ◽  
Ivan Marusic

Hot-wire data acquired in a high Reynolds number facility are used to illustrate the need for adequate scale separation when considering the coherent structure in wall-bounded turbulence. It is found that a large-scale motion in the log region becomes increasingly comparable in energy to the near-wall cycle as the Reynolds number increases. Through decomposition of fluctuating velocity signals, it is shown that this large-scale motion has a distinct modulating influence on the small-scale energy (akin to amplitude modulation). Reassessment of DNS data, in light of these results, shows similar trends, with the rate and intensity of production due to the near-wall cycle subject to a modulating influence from the largest-scale motions.


2014 ◽  
Vol 751 ◽  
Author(s):  
V. Avsarkisov ◽  
S. Hoyas ◽  
M. Oberlack ◽  
J. P. García-Galache

AbstractA new set of numerical simulations of turbulent plane Couette flow in a large box of dimension ($\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}20\pi h,\, 2h,\, 6\pi h$) at Reynolds number $(\mathit{Re}_{\tau }) =125$, 180, 250 and 550 is described and compared with simulations at lower Reynolds numbers, Poiseuille flows and experiments. The simulations present a logarithmic near-wall layer and are used to verify and revise previously known results. It is confirmed that the fluctuation intensities in the streamwise and spanwise directions do not scale well in wall units. The scaling failure occurs both near to and away from the wall. On the contrary, the wall-normal intensity scales in inner units in the near-wall region and in outer units in the core region. The spectral ridge found by Hoyas & Jiménez (Phys. Fluids, vol. 18, 2003, 011702) for the turbulent Poiseuille flow can also be seen in the present flow. Away from the wall, very large-scale motions are found spanning through all the length of the channel. The statistics of these simulations can be downloaded from the webpage of the Chair of Fluid Dynamics.


2016 ◽  
Vol 804 ◽  
pp. 90-115 ◽  
Author(s):  
Xiaolei Yang ◽  
Jiarong Hong ◽  
Matthew Barone ◽  
Fotis Sotiropoulos

Recent field experiments conducted in the near wake (up to 0.5 rotor diameters downwind of the rotor) of a Clipper Liberty C96 2.5 MW wind turbine using snow-based super-large-scale particle image velocimetry (SLPIV) (Hong et al., Nat. Commun., vol. 5, 2014, 4216) were successful in visualizing tip vortex cores as areas devoid of snowflakes. The so-visualized snow voids, however, suggested tip vortex cores of complex shape consisting of circular cores with distinct elongated comet-like tails. We employ large-eddy simulation (LES) to elucidate the structure and dynamics of the complex tip vortices identified experimentally. We show that the LES, with inflow conditions representing as closely as possible the state of the flow approaching the turbine when the SLPIV experiments were carried out, reproduce vortex cores in good qualitative agreement with the SLPIV results, essentially capturing all vortex core patterns observed in the field in the tip shear layer. The computed results show that the visualized vortex patterns are formed by the tip vortices and a second set of counter-rotating spiral vortices intertwined with the tip vortices. To probe the dependence of these newly uncovered coherent flow structures on turbine design, size and approach flow conditions, we carry out LES for three additional turbines: (i) the Scaled Wind Farm Technology (SWiFT) turbine developed by Sandia National Laboratories in Lubbock, TX, USA; (ii) the wind turbine developed for the European collaborative MEXICO (Model Experiments in Controlled Conditions) project; and (iii) the model turbine presented in the paper by Lignarolo et al. (J. Fluid Mech., vol. 781, 2015, pp. 467–493), and the Clipper turbine under varying inflow turbulence conditions. We show that similar counter-rotating vortex structures as those observed for the Clipper turbine are also observed for the SWiFT, MEXICO and model wind turbines. However, the strength of the counter-rotating vortices relative to that of the tip vortices from the model turbine is significantly weaker. We also show that incoming flows with low level turbulence attenuate the elongation of the tip and counter-rotating vortices. Sufficiently high turbulence levels in the incoming flow, on the other hand, tend to break up the coherence of spiral vortices in the near wake. To elucidate the physical mechanism that gives rise to such rich coherent dynamics we examine the stability of the turbine tip shear layer using the theory proposed by Leibovich & Stewartson (J. Fluid Mech., vol. 126, 1983, pp. 335–356). We show that for all simulated cases the theory consistently indicates the flow to be unstable exactly in the region where counter-rotating spirals emerge. We thus postulate that centrifugal instability of the rotating turbine tip shear layer is a possible mechanism for explaining the phenomena we have uncovered herein.


Sign in / Sign up

Export Citation Format

Share Document