scholarly journals Capillary instability of a two-layer annular film: an airway closure model

2022 ◽  
Vol 934 ◽  
Author(s):  
O. Erken ◽  
F. Romanò ◽  
J.B. Grotberg ◽  
M. Muradoglu

Capillary instability of a two-layer liquid film lining a rigid tube is studied computationally as a model for liquid plug formation and closure of human airways. The two-layer liquid consists of a serous layer, also called the periciliary liquid layer, at the inner side and a mucus layer at the outer side. Together, they form the airway surface liquid lining the airway wall and surrounding an air core. Liquid plug formation occurs due to Plateau–Rayleigh instability when the liquid film thickness exceeds a critical value. Numerical simulations are performed for the entire closure process, including the pre- and post-coalescence phases. The mechanical stresses and their gradients on the airway wall are investigated for physiologically relevant ranges of the mucus-to-serous thickness ratio, the viscosity ratio, and the air–mucus and serous–mucus surface tensions encompassing healthy and pathological conditions of a typical adult human lung. The growth rate of the two-layer model is found to be higher in comparison with a one-layer equivalent configuration. This leads to a much sooner closure in the two-layer model than that in the corresponding one-layer model. Moreover, it is found that the serous layer generally provides an effective protection to the pulmonary epithelium against high shear stress excursions and their gradients. A linear stability analysis is also performed, and the results are found to be in good qualitative agreement with the simulations. Finally, a secondary coalescence that may occur during the post-closure phase is investigated.

2021 ◽  
Vol 408 ◽  
pp. 126347
Author(s):  
Jiaqi Zhang ◽  
Ruigang Zhang ◽  
Liangui Yang ◽  
Quansheng Liu ◽  
Liguo Chen

Wave Motion ◽  
1998 ◽  
Vol 28 (4) ◽  
pp. 333-352 ◽  
Author(s):  
V.I. Klyatskin ◽  
N.V. Gryanik ◽  
D. Gurarie

1978 ◽  
Vol 15 (10) ◽  
pp. 1539-1546 ◽  
Author(s):  
A. Koziar ◽  
D. W. Strangway

The audiofrequency magnetotelluric (AMT) method has been used to study permafrost thickness near Tuktoyaktuk, N.W.T. in the Mackenzie Delta. In the frequency range of 10 Hz–10 kHz the permafrost behaves as a simple resistive layer over a conductive layer. This simple two-layer model can be inverted by asymptotic models to give a unique value for the thickness of the highly resistive frozen layer. In areas of simple layering, these results correlate well with drilling. In areas of sharp lateral variations in resistivity, depths tend to be underestimated. Unlike other electrical methods, AMT is not hampered by the presence of a surface melt layer in the summer if the conductivity–thickness product of this 'active layer' is less than about 0.03 mho (0.03 S).


Author(s):  
Quan Ouyang ◽  
Youmin Zhang ◽  
Nourallah Ghaeminezhad ◽  
Jian Chen ◽  
Zhisheng Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document