scholarly journals Peristaltic pumping in thin non-axisymmetric annular tubes

2021 ◽  
Vol 917 ◽  
Author(s):  
J. Brennen Carr ◽  
John H. Thomas ◽  
Jia Liu ◽  
Jessica K. Shang
Keyword(s):  

Abstract

2021 ◽  
Vol 104 (3) ◽  
pp. 003685042110336
Author(s):  
Safia Akram ◽  
Maria Athar ◽  
Khalid Saeed ◽  
Alia Razia

The consequences of double-diffusivity convection on the peristaltic transport of Sisko nanofluids in the non-uniform inclined channel and induced magnetic field are discussed in this article. The mathematical modeling of Sisko nanofluids with induced magnetic field and double-diffusivity convection is given. To simplify PDEs that are highly nonlinear in nature, the low but finite Reynolds number, and long wavelength estimation are used. The Numerical solution is calculated for the non-linear PDEs. The exact solution of concentration, temperature and nanoparticle are obtained. The effect of various physical parameters of flow quantities is shown in numerical and graphical data. The outcomes show that as the thermophoresis and Dufour parameters are raised, the profiles of temperature, concentration, and nanoparticle fraction all significantly increase.


2021 ◽  
Vol 104 (2) ◽  
pp. 003685042110136
Author(s):  
Safia Akram ◽  
Najma Saleem ◽  
Mir Yasir Umair ◽  
Sufian Munawar

The impact of lateral walls and partial slip with different waveforms on peristaltic pumping of couple stress fluid in a rectangular duct with different waveforms has been discussed in the current article. By means of a wave frame of reference the flow is explored travelling away from a fixed frame with velocity c. Peristaltic waves generated on horizontal surface walls of rectangular duct are considered using lubrication technique. Mathematical modelling of couple fluid for three-dimensional flow are first discussed in detail. Lubrication approaches are used to simplify the proposed problem. Exact solutions of pressure gradient, pressure rise, velocity and stream function have been calculated. Numerical and graphical descriptions are displayed to look at the behaviour of diverse emerging parameters.


2021 ◽  
Vol 33 (3) ◽  
pp. 033609
Author(s):  
J. M. Floryan ◽  
S. Panday ◽  
Kh. Md. Faisal
Keyword(s):  

1971 ◽  
Vol 3 (1) ◽  
pp. 13-37 ◽  
Author(s):  
M Y Jaffrin ◽  
A H Shapiro
Keyword(s):  

2018 ◽  
Vol 19 (4) ◽  
pp. 401 ◽  
Author(s):  
Ahmed Zeeshan ◽  
Nouman Ijaz ◽  
Muhammad Mubashir Bhatti

This article addresses the influence of particulate-fluid suspension on asymmetric peristaltic motion through a curved configuration with mass and heat transfer. A motivation for the current study is that such kind of theory is helpful to examine the two-phase peristaltic motion between small muscles during the propagation of different biological fluids. Moreover, it is also essential in multiple applications of pumping fluid-solid mixtures by peristalsis, i.e., Chyme in small intestine and suspension of blood in arteriole. Long wavelength, as well as small Reynolds number, have been utilized to render the governing equations for particle and fluid phase. Exact solutions are presented for velocity (uf,p), temperature (θf,p) and concentration distributions (φf,p). All the parameters such as Prandtl number (Pr), particle volume fraction (C), suspension parameter (M1), curvature parameter (k), volumetric flow rate (Q), Schmidt number (Sc), phase difference (φ), Eckert number (Ec), and Soret number (Sr) discussed graphically for peristaltic pumping (Δp), pressure gradient (dp/dx), velocity (uf,p), temperature (θf,p) and concentration distributions (φf,p). The streamlines are also plotted with the aid of contour.


Author(s):  
Shashank Acharya ◽  
Wenjun Kou ◽  
Sourav Halder ◽  
Dustin A. Carlson ◽  
Peter J. Kahrilas ◽  
...  

Abstract Balloon dilation catheters are often used to quantify the physiological state of peristaltic activity in tubular organs and comment on their ability to propel fluid which is important for healthy human function. To fully understand this system's behavior, we analyzed the effect of a solitary peristaltic wave on a fluid-filled elastic tube with closed ends. A reduced order model that predicts the resulting tube wall deformations, flow velocities and pressure variations is presented. This simplified model is compared with detailed fluid-structure 3D immersed boundary simulations of peristaltic pumping in tube walls made of hyperelastic material. The major dynamics observed in the 3D simulations were also displayed by our 1D model under laminar flow conditions. Using the 1D model, several pumping regimes were investigated and presented in the form of a regime map that summarizes the system's response for a range of physiological conditions. Finally, the amount of workdone during a peristaltic event in this configuration was defined and quantified. The variation of elastic energy and work done during pumping was found to have a unique signature for each regime. An extension of the 1D model is applied to enhance patient data collected by the device and find the work done for a typical esophageal peristaltic wave. This detailed characterization of the system's behavior aids in better interpreting the clinical data obtained from dilation catheters. Additionally, the pumping capacity of the esophagus can be quantified for comparative studies between disease groups.


1976 ◽  
Vol 9 (2) ◽  
pp. 105-109 ◽  
Author(s):  
B.B. Gupta ◽  
V. Seshadri
Keyword(s):  

2010 ◽  
Vol 132 (10) ◽  
Author(s):  
Y. V. K. Ravi Kumar ◽  
S. V. H. N. Krishna Kumari.P ◽  
M. V. Ramana Murthy ◽  
S. Sreenadh

Peristaltic transport due to a sinusoidal wave traveling on the boundary of a tube filled with an incompressible fluid is presented. Solution is obtained under infinite wavelength and zero Reynolds number in a finite length tube which extends the study of Li and Brasseur (1993, “Non-Steady Peristaltic Transport in Finite-Length Tubes,” J. Fluid Mech., 248, pp. 129–151). Boundary conditions are changed to include wall permeability. Analysis of pressure profile is described.


Sign in / Sign up

Export Citation Format

Share Document