scholarly journals On the role of added mass and vorticity release for self-propelled aquatic locomotion

2021 ◽  
Vol 918 ◽  
Author(s):  
D. Paniccia ◽  
G. Graziani ◽  
C. Lugni ◽  
R. Piva

Abstract

2021 ◽  
Vol 33 (8) ◽  
pp. 085120
Author(s):  
Zhicheng Wang ◽  
Dixia Fan ◽  
Michael S. Triantafyllou

1992 ◽  
Vol 162 (1) ◽  
pp. 107-130 ◽  
Author(s):  
LARRY M. FROLICH ◽  
ANDREW A. BIEWENER

Aquatic neotenic and terrestrial metamorphosed salamanders {Ambystoma tigrinum) were videotaped simultaneously with electromyographic (EMG) recording from five epaxial myotomes along the animal's trunk during swimming in a flow tank and trotting on a treadmill to investigate axial function during aquatic and terrestrial locomotion. Neotenic and metamorphosed individuals swim using very similar axial wave patterns, despite significant differences in axial morphology. During swimming, both forms exhibit traveling waves of axial flexion and muscle activity, with an increasing EMG-mechanical delay as these waves travel down the trunk. In contrast to swimming, during trotting metamorphosed individuals exhibit a standing wave of axial flexion produced by synchronous activation of ipsilateral epaxial myotomes along the trunk. Thus, metamorphosed individuals employ two distinct axial motor programs -- one used during swimming and one used during trotting. The transition from a traveling axial wave during swimming to a standing axial wave during trotting in A. tigrinum may be an appropriate analogy for similar transitions in axial locomotor function during theoriginal evolution of terrestriality in early tetrapods.


2012 ◽  
Vol 702 ◽  
pp. 286-297 ◽  
Author(s):  
S. Wang ◽  
A. M. Ardekani

AbstractSmall planktonic organisms ubiquitously display unsteady or impulsive motion to attack a prey or escape a predator in natural environments. Despite this, the role of unsteady forces such as history and added mass forces on the low-Reynolds-number propulsion of small organisms, e.g. Paramecium, is poorly understood. In this paper, we derive the fundamental equation of motion for an organism swimming by means of the surface distortion in a non-uniform background flow field at a low-Reynolds-number regime. We show that the history and added mass forces are important as the product of Reynolds number and Strouhal number increases above unity. Our results for an unsteady squirmer show that unsteady inertial effects can lead to a non-zero mean velocity for the cases with zero streaming parameters, which have zero mean velocity in the absence of inertia.


1996 ◽  
Vol 317 ◽  
pp. 73-90 ◽  
Author(s):  
J.-Y. Cheng ◽  
M. E. DeMont

A potential flow model has been formulated for scallop swimming. Under the smalldisturbance approximation, the problem of the unsteady flow past the wing-like configuration of a scallop is separated into two linear sub-problems: the steady lifting problem and the unsteady symmetric thickness problem. The latter is associated with the expansion and contraction of the boundary surface of the scallop due to the shell opening and closing. A quasi-two-dimensional analytical solution of the thickness problem was obtained to give the time-dependent fluid forces acting on the outer surfaces of the shells. In addition to the added-mass effect, which has been widely accepted in the hydrodynamics of aquatic locomotion, there are two other mechanisms in the fluid reaction: flow-induced pseudo-elasticity and pseudo-viscosity. The pseudoelasticity provides a force proportional to the gape angle displacement, and will assist shell opening but resist shell closing. The pseudo-viscosity force is proportional to the angular velocity of the gape, and benefits both shell opening and closing. Their roles are discussed through comparison with those of shell inertia, hinge ligament elasticity and hinge damping. At 10 °C the hinge damping in the scallop was found to be almost compensated by the flow pseudo-viscosity. The unsteady fluid reaction may have a significant effect on the operation of the dynamic swimming system of scallops.


2016 ◽  
Vol 798 ◽  
Author(s):  
F. Giorgio-Serchi ◽  
G. D. Weymouth

A submerged body subject to a sudden shape change experiences large forces due to the variation of added-mass energy. While this phenomenon has been studied for single actuation events, application to sustained propulsion requires the study of periodic shape change. We do so in this work by investigating a spring–mass oscillator submerged in quiescent fluid subject to periodic changes in its volume. We develop an analytical model to investigate the relationship between added-mass variation and viscous damping, and demonstrate its range of application with fully coupled fluid–solid Navier–Stokes simulations at large Stokes number. Our results demonstrate that the recovery of added-mass kinetic energy can be used to completely cancel the viscous damping of the fluid, driving the onset of sustained oscillations with amplitudes as large as four times the average body radius $r_{0}$. A quasi-linear relationship is found to link the terminal amplitude of the oscillations $X$ to the extent of size change $a$, with $X/a$ peaking at values from 4 to 4.75 depending on the details of the shape-change kinematics. In addition, it is found that pumping in the frequency range of $1-a/2r_{0}<{\it\omega}^{2}/{\it\omega}_{n}^{2}<1+a/2r_{0}$, with ${\it\omega}/{\it\omega}_{n}$ being the ratio between frequency of actuation and natural frequency, is required for sustained oscillations. The results of this analysis shed light on the role of added-mass recovery in the context of shape-changing bodies and biologically inspired underwater vehicles.


2012 ◽  
Vol 178-181 ◽  
pp. 2140-2143
Author(s):  
Xiang Lin Jiang ◽  
Dong Bing Zhang ◽  
Guo Liang Zen

Due to the role of the vehicle, the large-span bridge’s frequency which is according to the bridge monitoring data is actually the vibration frequency of the vehicle-bridge coupled vibration system, but not the bridge’s natural frequency. This paper gets formulation of the added mass and the beam’s natural frequency according to the added mass of the beam’s vibration equation; and the formulation is tested by experiments and numerical simulation of a large-span steel truss bridge model. Result shows that added masses which have the fixed location are linearly proportional to changing values of the bridge’s nature frequency.


Author(s):  
Jyrki M. Keto-Tokoi ◽  
Jerzy E. Matusiak ◽  
Erno K. Keskinen

Kaplan turbine runner rotates in water flow inside an enclosed discharge ring. The vibratory runner motion in the fluid flow induces pressure forces onto the wet runner surfaces with inertia effects conveniently described by the so-called hydrodynamic added mass and damping. These inertia effects influence the wet natural frequencies and the amplitudes. The role of the hydrodynamic added mass and damping in the Kaplan turbine shaft rotor dynamics has not been sufficiently well understood. This paper focuses on comprehensive understanding of these phenomena across the Kaplan design range. The results are based on a method derived from Theodorsen’s unsteady thin airfoil theory and on the Finite Element Method (FEM). The former method includes the water flow, the runner rotation and the circulatory effects, which makes it possible to calculate the added damping and evaluate the accuracy of FEM. The most critical vibration modes and shaft line configurations have been identified with inherent weaknesses in typical shaft line models. The added damping has been quantified. The numerical results have been compared to the experimental results.


Author(s):  
S. Zoghlami ◽  
C. Béguin ◽  
S. Etienne ◽  
D. Scott ◽  
L. Bornard
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document