potential flow model
Recently Published Documents


TOTAL DOCUMENTS

103
(FIVE YEARS 8)

H-INDEX

16
(FIVE YEARS 0)

2021 ◽  
Vol 299 ◽  
pp. 117321
Author(s):  
Jieyang Peng ◽  
Andreas Kimmig ◽  
Zhibin Niu ◽  
Jiahai Wang ◽  
Xiufeng Liu ◽  
...  


2021 ◽  
Vol 23 (4) ◽  
Author(s):  
Chengshan Wang ◽  
Zongyan Zhou ◽  
Dandan Li ◽  
Yanwen Shi


Author(s):  
M. BILIAIEV ◽  
O. BERLOV ◽  
V. BILIAIEVA ◽  
O. VERGUN

Problem statement. The problem of evaluating the effectiveness of using the water curtain to reduce the risk of thermal injury to people in a fire is considered. The problem is to determine the temperature fields when supplying water for air cooling. The purpose of the article. Development of a numerical model for calculating the process of propagation of water droplets in the air, their evaporation to reduce the temperature of heated air due to fire. Methodology. For mathematical modeling of the process of propagation of water droplets in air, thermal air pollution, the convective-diffusion equation of mass transfer, the energy equation and the equation describing the motion of an ideal liquid (potential flow model) are used. The potential flow model allows you to quickly determine the field of air flow velocity in areas with a complex geometric shape. Implicit difference splitting schemes are used for numerical integration of the convective-diffusion mass transfer equation and the energy equation. Physical splitting of basic equations is used to construct a difference analogue of modeling equations. The Richardson method and the conditional approximation scheme are used to solve the aerodynamics problem of determining the velocity potential field and the components of the air velocity vector. An engineering method for calculating the process of evaporation of a drop of water based on Sreznevsky's law has been developed. Scientific novelty. An effective numerical model has been developed that allows the method of computational experiment to determine the efficiency of using the water curtain to reduce the level of thermal pollution of atmospheric air due to fire. The numerical model is based on the integration of the fundamental equations of aerodynamics, heat and mass transfer. The model takes into account the most significant physical factors that affect the process under study: the movement of heated air, the movement of water droplets in the air, evaporation of the droplet, and so on. Practical significance. Based on the built model, a computer code has been created that allows you to quickly determine the temperature fields in the air when using a water curtain. The numerical model will be useful when conducting computational experiments for the purpose of scientifically sound choice of the location of the water curtain in case of fire. Conclusions. A computer code has been created that allows a computational experiment to investigate the effectiveness of using a water curtain in a fire. The developed computer program can be implemented on low and medium power computers. The results of a computational experiment are presented.



2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sunghwan Jung

AbstractAnimals swim in water, fly in air, or dive into water to find mates, chase prey, or escape from predators. Even though these locomotion modes are phenomenologically distinct, we can rationalize the underlying hydrodynamic forces using a unified fluid potential model. First, we review the previously known complex potential of a moving thin plate to describe circulation and pressure around the body. Then, the impact force in diving or thrust force in swimming and flying are evaluated from the potential flow model. For the impact force, we show that the slamming or impact force of various ellipsoid-shaped bodies of animals increases with animal weight, however, the impact pressure does not vary much. For fliers, birds and bats follow a linear correlation between thrust lift force and animal weight. For swimming animals, we present a scaling of swimming speed as a balance of thrust force with drag, which is verified with biological data. Under this framework, three distinct animal behaviors (i.e., swimming, flying, and diving) are similar in that a thin appendage displaces and pressurizes a fluid, but different in regards to the surroundings, being either fully immersed in a fluid or at a fluid interface.





2020 ◽  
pp. 993-999
Author(s):  
C.-E. Hagentoft ◽  
Anneli Högberg


2020 ◽  
pp. 102445
Author(s):  
Zaibin Lin ◽  
Ling Qian ◽  
Wei Bai ◽  
Zhihua Ma ◽  
Hao Chen ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document