scholarly journals The ultimate state of turbulent permeable-channel flow

2021 ◽  
Vol 931 ◽  
Author(s):  
Shingo Motoki ◽  
Kentaro Tsugawa ◽  
Masaki Shimizu ◽  
Genta Kawahara

Direct numerical simulations have been performed for heat and momentum transfer in internally heated turbulent shear flow with constant bulk mean velocity and temperature, $u_{b}$ and $\theta _{b}$ , between parallel, isothermal, no-slip and permeable walls. The wall-normal transpiration velocity on the walls $y=\pm h$ is assumed to be proportional to the local pressure fluctuations, i.e. $v=\pm \beta p/\rho$ (Jiménez et al., J. Fluid Mech., vol. 442, 2001, pp. 89–117). The temperature is supposed to be a passive scalar, and the Prandtl number is set to unity. Turbulent heat and momentum transfer in permeable-channel flow for the dimensionless permeability parameter $\beta u_b=0.5$ has been found to exhibit distinct states depending on the Reynolds number $Re_b=2h u_b/\nu$ . At $Re_{b}\lesssim 10^4$ , the classical Blasius law of the friction coefficient and its similarity to the Stanton number, $St\approx c_{f}\sim Re_{b}^{-1/4}$ , are observed, whereas at $Re_{b}\gtrsim 10^4$ , the so-called ultimate scaling, $St\sim Re_b^0$ and $c_{f}\sim Re_b^0$ , is found. The ultimate state is attributed to the appearance of large-scale intense spanwise rolls with the length scale of $O(h)$ arising from the Kelvin–Helmholtz type of shear-layer instability over the permeable walls. The large-scale rolls can induce large-amplitude velocity fluctuations of $O(u_b)$ as in free shear layers, so that the Taylor dissipation law $\epsilon \sim u_{b}^{3}/h$ (or equivalently $c_{f}\sim Re_b^0$ ) holds. In spite of strong turbulence promotion there is no flow separation, and thus large-amplitude temperature fluctuations of $O(\theta _b)$ can also be induced similarly. As a consequence, the ultimate heat transfer is achieved, i.e. a wall heat flux scales with $u_{b}\theta _{b}$ (or equivalently $St\sim Re_b^0$ ) independent of thermal diffusivity, although the heat transfer on the walls is dominated by thermal conduction.

2015 ◽  
Vol 2015 (0) ◽  
pp. _1518-1_-_1518-3_
Author(s):  
Hisaaki HASEGAWA ◽  
Yuuki AOKI ◽  
Kousuke ISHIKAWA ◽  
Genta KAWAHARA ◽  
Markus UHLMANN ◽  
...  

2019 ◽  
Vol 2019 (0) ◽  
pp. J05117P
Author(s):  
Tomohiro ISHIBASHI ◽  
Genta KAWAHARA ◽  
Masaki SHIMIZU ◽  
Shingo MOTOKI

Author(s):  
Changwoo Kang ◽  
Kyung-Soo Yang

Heat transfer characteristics of baffled channel flow, where thin baffles are mounted on both channel walls periodically in the direction of the main flow, have been numerically investigated in a laminar range. In baffled channel flow, heat transfer characteristics are significantly affected by large-scale vortices generated due to flow separation at the tips of the baffles. In this investigation, a parametric study has been carried out to identify the optimal configuration of the baffles to achieve the most efficient heat removal from the channel walls. Two key parameters are considered, namely baffle interval (L) and Reynolds number (Re). We elucidate the role of the primary instability, a Hopf bifurcation from steady to a time-periodic flow, in the convective heat transfer in baffled channel flow. We also propose a contour diagram (“map”) of averaged Nusselt number on the channel walls as a function of the two parameters. The results shed light on understanding and controlling heat transfer mechanism in a finned heat exchanger, being quite beneficial to its design.


Author(s):  
Felix Sharipov

In practice, one deals with gaseous mixtures more frequently than with a single gas. However, very few papers about the transport phenomena through a mixture of rarefied gases were published. The aim of this work is to present a general approach to calculations of mass, heat and momentum transfer through gaseous mixtures over the whole range of the gas rarefaction. Results on some classical problems such as slip coefficient, Poiseuille flow, Couette flow and heat transfer are given for a gaseous mixture. A comparison with results corresponding to a single gas is carried out. Such a comparison shows the peculiarities of the transport phenomena in mixtures.


1996 ◽  
Vol 8 (11) ◽  
pp. 2964-2973 ◽  
Author(s):  
Masaharu Matsubara ◽  
P. Henrik Alfredsson

2014 ◽  
Vol 137 (1) ◽  
Author(s):  
S. N. Kazi ◽  
G. G. Duffy ◽  
X. D. Chen

Heat transfer and pressure loss measurements were obtained simultaneously for a range of wood pulp fiber suspensions flowing in a pipeline. Data were obtained over a selected range of flow rates and temperatures from a specially built flow loop. It was found that the magnitude of the heat transfer coefficient was above water at equivalent experimental conditions and at very low fiber concentrations, but progressively decreased until it was below water at slightly higher concentrations. Similar trends were obtained for the pressure drop measurements obtained simultaneously, showing good correspondence between the two sets of data. It was found that both heat and momentum transfer are affected in a closely similar way by varying fiber properties, such as fiber length, fiber flexibility, fiber chemical and mechanical treatment, the variation of fibers from different parts of the tree, as well as the different pulping methods used to liberate the fibers from the wood structure. Drag reduction increased and heat transfer coefficient decreased with increasing fiber flexibility as found by previous workers.


2019 ◽  
Vol 2019 (0) ◽  
pp. J05119P
Author(s):  
Kentaro TSUGAWA ◽  
Shingo Motoki ◽  
Masaki SHIMIZU ◽  
Genta KAWAHARA

2009 ◽  
Vol 131 (7) ◽  
Author(s):  
Dong-Hyeog Yoon ◽  
Kyung-Soo Yang ◽  
Choon-Bum Choi

Heat transfer enhancement in channel flow by using an inclined vortex generator has been numerically investigated. A square cylinder is located on the centerline of laminar channel flow, which is subject to a constant heat flux on the lower channel wall. As the cylinder is inclined with some angle of attack with respect to the main flow direction, flow characteristics change downstream of the cylinder, and significantly affect heat transfer on the channel wall. A parametric study has been conducted to identify the cause, and to possibly find the optimal inclination angle. It turns out that the increased periodic fluctuation of the vertical velocity component in the vicinity of the channel walls is responsible for the heat transfer enhancement. The large fluctuation is believed to be induced by the large-scale vortices shed from the inclined square cylinder, as well as by the secondary vortices formed near the channel walls.


1969 ◽  
Vol 91 (4) ◽  
pp. 488-494 ◽  
Author(s):  
N. S. Sood ◽  
V. K. Jonsson

Functions for the resistance to heat and momentum transfer in the region near the wall have been defined for flows with various geometries, and correlations from available literature on rough wall friction and heat transfer have been made for these functions. The functions may then be used in the expressions for velocity and temperature profiles to solve the turbulent boundary-layer equations for flows over rough surfaces. Roughnesses such as those formed by machined grooves, piston-rings, wires, and three-dimensional elements have been included in the correlations.


Sign in / Sign up

Export Citation Format

Share Document