Some Correlations for Resistances to Heat and Momentum Transfer in the Viscous Sublayer at Rough Walls

1969 ◽  
Vol 91 (4) ◽  
pp. 488-494 ◽  
Author(s):  
N. S. Sood ◽  
V. K. Jonsson

Functions for the resistance to heat and momentum transfer in the region near the wall have been defined for flows with various geometries, and correlations from available literature on rough wall friction and heat transfer have been made for these functions. The functions may then be used in the expressions for velocity and temperature profiles to solve the turbulent boundary-layer equations for flows over rough surfaces. Roughnesses such as those formed by machined grooves, piston-rings, wires, and three-dimensional elements have been included in the correlations.

1962 ◽  
Vol 12 (3) ◽  
pp. 337-357 ◽  
Author(s):  
Andreas Acrivos

The convective diffusion of matter from a stationary object to a moving fluid stream is distinct from pure heat transfer because of the appearance of a finite interfacial velocity at the solid surface. This velocity is related to the rate of mass transfer by a dimensionless groupBin such a way that for −1 <B< 0 the transfer is from the bulk to the surface while for 0 <B< ∞ the transfer is from the surface to the main stream. In this paper, asymptotic solutions to the two-dimensional laminar boundary-layer equations are developed for the caseB[Gt ] 1, and for rather general systems. It is shown that in most instances the asymptotic expressions for the rate of mass transfer become accurate whenB> 3 and that the transition region between the pure heat-transfer analogy (B∼ 0) and theB[Gt ] 1 asymptote may be described by a simple graphical interpolation. These results may easily be extended to three-dimensional surfaces of revolution by the usual co-ordinate transformations of boundary-layer theory.


Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 1077
Author(s):  
Muhammad Tamoor ◽  
Muhammad Kamran ◽  
Sadique Rehman ◽  
Aamir Farooq ◽  
Rewayat Khan ◽  
...  

In this study, a numerical approach was adopted in order to explore the analysis of magneto fluid in the presence of thermal radiation combined with mixed convective and slip conditions. Using the similarity transformation, the axisymmetric three-dimensional boundary layer equations were reduced to a self-similar form. The shooting technique, combined with the Range–Kutta–Fehlberg method, was used to solve the resulting coupled nonlinear momentum and heat transfer equations numerically. When physically interpreting the data, some important observations were made. The novelty of the present study lies in finding help to control the rate of heat transfer and fluid velocity in any industrial manufacturing processes (such as the cooling of metallic plates). The numerical results revealed that the Nusselt number decrease for larger Prandtl number, curvature, and convective parameters. At the same time, the skin friction coefficient was enhanced with an increase in both slip velocity and convective parameter. The effect of emerging physical parameters on velocity and temperature profiles for a nonlinear stretching cylinder has been thoroughly studied and analyzed using plotted graphs and tables.


Starting with the three-dimensional equations of classical isotropic elasticity, equations are obtained for boundary-layer effects near any smooth edge of an elastic shell. Solutions of these equations are combined with solutions of the equations of the 'interior’ problem so that any specified edge conditions in terms of stresses can be satisfied. The usual Kirchhoff stress boundary conditions for the major terms of the interior stresses are deduced from the analysis.


Author(s):  
Anil K. Tolpadi ◽  
James A. Tallman ◽  
Lamyaa El-Gabry

Conventional heat transfer design methods for turbine airfoils use 2-D boundary layer codes (BLC) combined with empiricism. While such methods may be applicable in the mid span of an airfoil, they would not be very accurate near the end-walls and airfoil tip where the flow is very three-dimensional (3-D) and complex. In order to obtain accurate heat transfer predictions along the entire span of a turbine airfoil, 3-D computational fluid dynamics (CFD) must be used. This paper describes the development of a CFD based design system to make heat transfer predictions. A 3-D, compressible, Reynolds-averaged Navier-Stokes CFD solver with k-ω turbulence modeling was used. A wall integration approach was used for boundary layer prediction. First, the numerical approach was validated against a series of fundamental airfoil cases with available data. The comparisons were very favorable. Subsequently, it was applied to a real engine airfoil at typical design conditions. A discussion of the features of the airfoil heat transfer distribution is included.


2021 ◽  
Vol 118 (34) ◽  
pp. e2111144118 ◽  
Author(s):  
Kevin Patrick Griffin ◽  
Lin Fu ◽  
Parviz Moin

In this work, a transformation, which maps the mean velocity profiles of compressible wall-bounded turbulent flows to the incompressible law of the wall, is proposed. Unlike existing approaches, the proposed transformation successfully collapses, without specific tuning, numerical simulation data from fully developed channel and pipe flows, and boundary layers with or without heat transfer. In all these cases, the transformation is successful across the entire inner layer of the boundary layer (including the viscous sublayer, buffer layer, and logarithmic layer), recovers the asymptotically exact near-wall behavior in the viscous sublayer, and is consistent with the near balance of turbulence production and dissipation in the logarithmic region of the boundary layer. The performance of the transformation is verified for compressible wall-bounded flows with edge Mach numbers ranging from 0 to 15 and friction Reynolds numbers ranging from 200 to 2,000. Based on physical arguments, we show that such a general transformation exists for compressible wall-bounded turbulence regardless of the wall thermal condition.


Sign in / Sign up

Export Citation Format

Share Document