Creep Buckling and Post-Buckling Analyses of a Viscoelastic FGM Cylindrical Shell with Initial Deflection Subjected to a Uniform In-Plane Load

2012 ◽  
Vol 28 (2) ◽  
pp. 391-399 ◽  
Author(s):  
H.-L. Dai ◽  
H.-Y. Zheng

AbstractIn this paper, based on the viscoelastic theory, the creep buckling and post-buckling behaviors of a viscoelastic functionally graded material (FGM) cylindrical shell with initial deflection subjected to a uniform in-plane load are investigated. The material properties of the viscoelastic FGM cylindrical shell are assumed to vary through the structural thickness according to a power law distribution of the volume fraction of constituent materials and Poisson's ratio is assumed as a constant. Considering the transverse shear deformation and geometric nonlinearity, the constitutive relation of the viscoelastic FGM cylindrical shell is established. By means of the Newton-Newmark method and the Boltzmann superposition principle, the problem for the creep buckling and post-buckling of the FGM cylindrical shell is solved. The numerical results reveal that the transverse shear deformation, volume fraction and geometric parameters have significant effects on the creep buckling and post-buckling of the viscoelastic FGM cylindrical shell.

2013 ◽  
Vol 5 (03) ◽  
pp. 351-364 ◽  
Author(s):  
Tahar Hassaine Daouadji ◽  
Abdelouahed Tounsi ◽  
El Abbes Adda Bedia

AbstractIn this paper, a new displacement based high-order shear deformation theory is introduced for the static response of functionally graded plate. Unlike any other theory, the number of unknown functions involved is only four, as against five in case of other shear deformation theories. The theory presented is variationally consistent, has strong similarity with classical plate theory in many aspects, does not require shear correction factor, and gives rise to transverse shear stress variation such that the transverse shear stresses vary parabolically across the thickness satisfying shear stress free surface conditions. The mechanical properties of the plate are assumed to vary continuously in the thickness direction by a simple power-law distribution in terms of the volume fractions of the constituents. Numerical illustrations concerned flexural behavior of FG plates with Metal-Ceramic composition. Parametric studies are performed for varying ceramic volume fraction, volume fraction profiles, aspect ratios and length to thickness ratios. The validity of the present theory is investigated by comparing some of the present results with those of the classical, the first-order and the other higher-order theories. It can be concluded that the proposed theory is accurate and simple in solving the static behavior of functionally graded plates.


2020 ◽  
Vol 25 (1) ◽  
pp. 79-87
Author(s):  
K. Renji ◽  
S. Josephine Kelvina Florence

The sound radiation characteristics of a structure depend on its critical frequency. The expression for theoretically estimating the critical frequency of a composite cylindrical shell has not yet been reported. Thus, the practice is to use the expression for the composite panel for determining the critical frequency of a composite shell. In this work, critical frequencies of composite shells are investigated. As the critical frequency depends on the speed of the bending wave, an expression for the speed of the bending wave is first derived. It is seen that the curvature causes an increase in the speed of the bending wave and the orthotropic nature of the cylinder reduces the speed. An expression for the critical frequency of a composite cylindrical shell is then derived. The curvature causes a reduction in the critical frequency and the influence is significant in acoustically thick cylinders. Hence, the critical frequencies of such cylinders cannot be determined by using the expression for the panels. Effects of transverse shear deformation on the speed of the bending wave as well as the critical frequency are then investigated. Transverse shear deformation causes both reduction in the speed of the bending wave and an increase in the critical frequency. The orthotropic nature of the cylindrical shell increases the critical frequency further. The critical frequency of a typical composite cylinder is determined through a numerical simulation and the results are in agreement with the results obtained using the expressions derived. The critical frequency of a typical composite cylinder obtained through an experiment is presented. With this work, expressions for theoretically estimating the speeds of the bending waves and critical frequencies are derived for a composite cylindrical shell considering transverse shear deformation.


1967 ◽  
Vol 34 (3) ◽  
pp. 659-666 ◽  
Author(s):  
S. T. Gulati ◽  
F. Essenburg

The solution of the problem of the generally anisotropic axisymmetric circular cylindrical shell is obtained employing a recent shell theory given by Naghdi. The practical importance of the presence of the circumferential displacement components and the twisting couple arising due to the presence of anisotropy, as well as the significance of the inclusion of the coupled effects of transverse shear deformation and anisotropy, are illustrated by a specific example.


Author(s):  
Mohamed-Ouejdi Belarbi ◽  
Abdelhak Khechai ◽  
Aicha Bessaim ◽  
Mohammed-Sid-Ahmed Houari ◽  
Aman Garg ◽  
...  

In this paper, the bending behavior of functionally graded single-layered, symmetric and non-symmetric sandwich beams is investigated according to a new higher order shear deformation theory. Based on this theory, a novel parabolic shear deformation function is developed and applied to investigate the bending response of sandwich beams with homogeneous hardcore and softcore. The present theory provides an accurate parabolic distribution of transverse shear stress across the thickness and satisfies the zero traction boundary conditions on the top and bottom surfaces of the functionally graded sandwich beam without using any shear correction factors. The governing equations derived herein are solved by employing the finite element method using a two-node beam element, developed for this purpose. The material properties of functionally graded sandwich beams are graded through the thickness according to the power-law distribution. The predictive capability of the proposed finite element model is demonstrated through illustrative examples. Four types of beam support, i.e. simply-simply, clamped-free, clamped–clamped, and clamped-simply, are used to study how the beam deflection and both axial and transverse shear stresses are affected by the variation of volume fraction index and beam length-to-height ratio. Results of the numerical analysis have been reported and compared with those available in the open literature to evaluate the accuracy and robustness of the proposed finite element model. The comparisons with other higher order shear deformation theories verify that the proposed beam element is accurate, presents fast rate of convergence to the reference results and it is also valid for both thin and thick functionally graded sandwich beams. Further, some new results are reported in the current study, which will serve as a benchmark for future research.


Sign in / Sign up

Export Citation Format

Share Document